1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
alejandrafarwe edited this page 2025-04-03 11:40:46 +08:00
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion parameters to develop, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes reinforcement learning to improve reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key distinguishing function is its support knowing (RL) action, which was utilized to refine the design's responses beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adapt more efficiently to user feedback and garagesale.es objectives, ultimately enhancing both significance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, meaning it's equipped to break down intricate questions and reason through them in a detailed way. This assisted reasoning procedure permits the model to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT capabilities, aiming to produce structured reactions while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has actually recorded the industry's attention as a versatile text-generation design that can be incorporated into different workflows such as agents, logical thinking and data analysis tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion parameters, making it possible for efficient inference by routing queries to the most appropriate professional "clusters." This approach allows the model to specialize in different problem domains while maintaining total effectiveness. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more efficient models to simulate the behavior and thinking patterns of the larger DeepSeek-R1 model, utilizing it as an instructor design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid harmful content, and examine designs against key safety criteria. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limitation boost, create a limit increase request and reach out to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up approvals to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, prevent hazardous content, and evaluate designs against essential safety requirements. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation involves the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, systemcheck-wiki.de it's sent to the design for reasoning. After receiving the design's output, another guardrail check is used. If the output passes this final check, it's returned as the final outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following sections show inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 design.

The model detail page offers essential details about the design's capabilities, pricing structure, and implementation standards. You can find detailed use guidelines, including sample API calls and code bits for combination. The model supports different text generation tasks, consisting of material development, code generation, and concern answering, utilizing its support discovering optimization and CoT thinking capabilities. The page also consists of deployment choices and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, select Deploy.

You will be triggered to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of instances, enter a variety of circumstances (between 1-100). 6. For Instance type, select your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can configure innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role approvals, and wiki.rolandradio.net file encryption settings. For many utilize cases, the default settings will work well. However, for production deployments, you may want to evaluate these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the implementation is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in playground to access an interactive user interface where you can try out various triggers and change design specifications like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For example, material for reasoning.

This is an exceptional method to explore the design's thinking and text generation abilities before integrating it into your applications. The play area provides immediate feedback, helping you comprehend how the model reacts to various inputs and letting you fine-tune your prompts for optimum outcomes.

You can rapidly evaluate the design in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to perform reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and sends a request to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers two convenient techniques: using the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to help you pick the technique that finest matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design browser displays available designs, with details like the supplier name and design abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card shows essential details, including:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if suitable), wakewiki.de indicating that this model can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to view the model details page.

    The model details page consists of the following details:

    - The design name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you release the model, it's suggested to review the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with .

    7. For Endpoint name, utilize the immediately produced name or create a custom-made one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is essential for cost and performance optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to release the design.

    The deployment procedure can take several minutes to complete.

    When implementation is total, your endpoint status will change to InService. At this moment, the model is all set to accept reasoning demands through the endpoint. You can monitor the implementation development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the deployment is total, you can conjure up the model using a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To start with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as revealed in the following code:

    Clean up

    To prevent unwanted charges, complete the steps in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the model utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace implementations.
  5. In the Managed implementations section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative solutions using AWS services and sped up calculate. Currently, he is focused on developing techniques for fine-tuning and enhancing the inference performance of big language models. In his spare time, Vivek takes pleasure in hiking, seeing films, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building options that help clients accelerate their AI journey and unlock company worth.