emsApplication/applications/ems_datahubs/main.cpp

942 lines
24 KiB
C++

#include <string>
#include <chrono>
#include <fcntl.h>
#include <unistd.h>
#include <fstream>
#include <memory>
#include <iomanip>
#include <sstream>
#include <hv/hv.h>
#include <hv/hmain.h>
#include <hv/iniparser.h>
#include <hv/hloop.h>
#include <hv/hsocket.h>
#include <hv/hssl.h>
#include <zlib/zlib.h>
#include "mqtt_msg.h"
#include "openjson.h"
#include "opmysql.h"
#include "iconv-utils.h"
#define TEST_UNPACK 1
#define K22_STR_EXP(__A) #__A
#define K22_STR(__A) K22_STR_EXP(__A)
#define K22_CMS_VERSION_MAJOR 1
#define K22_CMS_VERSION_MINOR 215
#define K22_CMS_VERSION_REVISION 0
#define K22_VERSION K22_STR(K22_CMS_VERSION_MAJOR) "." K22_STR(K22_CMS_VERSION_MINOR) "." K22_STR(K22_CMS_VERSION_REVISION) ""
#define CHUNK 16384
/* Compress from file source to file dest until EOF on source.
def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
allocated for processing, Z_STREAM_ERROR if an invalid compression
level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
version of the library linked do not match, or Z_ERRNO if there is
an error reading or writing the files. */
int CompressString(const char* in_str, size_t in_len, std::string& out_str, int level)
{
if (!in_str)
return Z_DATA_ERROR;
int ret, flush;
unsigned have;
z_stream strm;
unsigned char out[CHUNK];
/* allocate deflate state */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
ret = deflateInit(&strm, level);
if (ret != Z_OK)
return ret;
std::shared_ptr<z_stream> sp_strm(&strm, [](z_stream* strm)
{
(void)deflateEnd(strm);
});
const char* end = in_str + in_len;
//size_t pos_index = 0;
size_t distance = 0;
/* compress until end of file */
do
{
distance = end - in_str;
strm.avail_in = (distance >= CHUNK) ? CHUNK : distance;
strm.next_in = (Bytef*)in_str;
// next pos
in_str += strm.avail_in;
flush = (in_str == end) ? Z_FINISH : Z_NO_FLUSH;
/* run deflate() on input until output buffer not full, finish
compression if all of source has been read in */
do
{
strm.avail_out = CHUNK;
strm.next_out = out;
ret = deflate(&strm, flush); /* no bad return value */
if (ret == Z_STREAM_ERROR)
break;
have = CHUNK - strm.avail_out;
out_str.append((const char*)out, have);
} while (strm.avail_out == 0);
if (strm.avail_in != 0); /* all input will be used */
break;
/* done when last data in file processed */
} while (flush != Z_FINISH);
if (ret != Z_STREAM_END) /* stream will be complete */
return Z_STREAM_ERROR;
/* clean up and return */
return Z_OK;
}
/* Decompress from file source to file dest until stream ends or EOF.
inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
allocated for processing, Z_DATA_ERROR if the deflate data is
invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
the version of the library linked do not match, or Z_ERRNO if there
is an error reading or writing the files. */
int DecompressString(const char* in_str, size_t in_len, std::string& out_str)
{
if (!in_str)
return Z_DATA_ERROR;
int ret;
unsigned have;
z_stream strm;
unsigned char out[CHUNK];
/* allocate inflate state */
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = 0;
strm.next_in = Z_NULL;
ret = inflateInit(&strm);
if (ret != Z_OK)
return ret;
std::shared_ptr<z_stream> sp_strm(&strm, [](z_stream* strm)
{
(void)inflateEnd(strm);
});
const char* end = in_str + in_len;
//size_t pos_index = 0;
size_t distance = 0;
int flush = 0;
/* decompress until deflate stream ends or end of file */
do
{
distance = end - in_str;
strm.avail_in = (distance >= CHUNK) ? CHUNK : distance;
strm.next_in = (Bytef*)in_str;
// next pos
in_str += strm.avail_in;
flush = (in_str == end) ? Z_FINISH : Z_NO_FLUSH;
/* run inflate() on input until output buffer not full */
do
{
strm.avail_out = CHUNK;
strm.next_out = out;
ret = inflate(&strm, Z_NO_FLUSH);
if (ret == Z_STREAM_ERROR) /* state not clobbered */
break;
switch (ret)
{
case Z_NEED_DICT:
ret = Z_DATA_ERROR; /* and fall through */
case Z_DATA_ERROR:
case Z_MEM_ERROR:
return ret;
}
have = CHUNK - strm.avail_out;
out_str.append((const char*)out, have);
} while (strm.avail_out == 0);
/* done when inflate() says it's done */
} while (flush != Z_FINISH);
/* clean up and return */
return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
}
//static OpDatabase gOpDatabase;
#if TEST_UNPACK
static unpack_setting_t unpack_setting;
#endif
/*
* @build: make
* @usage: datahubs -h
* datahubs -v
*
* datahubs -c datahubs.conf -d
* ps aux | grep datahubs
*
* datahubs -s stop
* ps aux | grep datahubs
*
*/
typedef struct conf_ctx_s
{
IniParser* parser;
int loglevel;
int worker_processes;
int worker_threads;
std::string host;
int port;
std::string dbserver;
std::string dbuser;
std::string dbname;
} conf_ctx_t;
conf_ctx_t g_conf_ctx;
inline void conf_ctx_init(conf_ctx_t* ctx)
{
ctx->parser = new IniParser;
ctx->loglevel = LOG_LEVEL_DEBUG;
ctx->worker_processes = 0;
ctx->worker_threads = 0;
ctx->port = 0;
ctx->dbname = "hjems";
ctx->dbuser = "root";
ctx->dbserver = "tcp://127.0.0.1:3306";
}
static void print_version();
static void print_help();
static int parse_confile(const char* confile);
static void worker_fn(void* userdata);
// short options
static const char options[] = "hvc:ts:dp:";
// long options
static const option_t long_options[] =
{
{'h', "help", NO_ARGUMENT},
{'v', "version", NO_ARGUMENT},
{'c', "confile", REQUIRED_ARGUMENT},
{'t', "test", NO_ARGUMENT},
{'s', "signal", REQUIRED_ARGUMENT},
{'d', "daemon", NO_ARGUMENT},
{'p', "port", REQUIRED_ARGUMENT}
};
static const char detail_options[] = R"(
-h|--help Print this information
-v|--version Print version
-c|--confile <confile> Set configure file, default etc/{program}.conf
-t|--test Test configure file and exit
-s|--signal <signal> Send <signal> to process,
<signal>=[start,stop,restart,status,reload]
-d|--daemon Daemonize
-p|--port <port> Set listen port
)";
void print_version()
{
printf("%s version %s\n", g_main_ctx.program_name, K22_VERSION);
}
void print_help()
{
printf("Usage: %s [%s]\n", g_main_ctx.program_name, options);
printf("Options:\n%s\n", detail_options);
}
int parse_confile(const char* confile)
{
int ret = g_conf_ctx.parser->LoadFromFile(confile);
if (ret != 0)
{
printf("Load confile [%s] failed: %d\n", confile, ret);
exit(-40);
}
// logfile
std::string str = g_conf_ctx.parser->GetValue("logfile");
if (!str.empty())
{
strncpy(g_main_ctx.logfile, str.c_str(), sizeof(g_main_ctx.logfile));
}
hlog_set_file(g_main_ctx.logfile);
// loglevel
str = g_conf_ctx.parser->GetValue("loglevel");
if (!str.empty())
{
hlog_set_level_by_str(str.c_str());
}
// log_filesize
str = g_conf_ctx.parser->GetValue("log_filesize");
if (!str.empty())
{
hlog_set_max_filesize_by_str(str.c_str());
}
// log_remain_days
str = g_conf_ctx.parser->GetValue("log_remain_days");
if (!str.empty())
{
hlog_set_remain_days(atoi(str.c_str()));
}
// log_fsync
str = g_conf_ctx.parser->GetValue("log_fsync");
if (!str.empty())
{
logger_enable_fsync(hlog, hv_getboolean(str.c_str()));
}
// first log here
// first log here
hlogi("=========--- Welcome to the Earth ---=========");
hlogi("%s version: %s", g_main_ctx.program_name, K22_VERSION);
hlog_fsync();
// worker_processes
int worker_processes = 0;
#ifdef DEBUG
// Disable multi-processes mode for debugging
worker_processes = 0;
#else
str = g_conf_ctx.parser->GetValue("worker_processes");
if (str.size() != 0)
{
if (strcmp(str.c_str(), "auto") == 0)
{
worker_processes = get_ncpu();
hlogd("worker_processes=ncpu=%d", worker_processes);
}
else
{
worker_processes = atoi(str.c_str());
}
}
#endif
g_conf_ctx.worker_processes = LIMIT(0, worker_processes, MAXNUM_WORKER_PROCESSES);
// worker_threads
int worker_threads = 0;
str = g_conf_ctx.parser->GetValue("worker_threads");
if (str.size() != 0)
{
if (strcmp(str.c_str(), "auto") == 0)
{
worker_threads = get_ncpu();
hlogd("worker_threads=ncpu=%d", worker_threads);
}
else {
worker_threads = atoi(str.c_str());
}
}
g_conf_ctx.worker_threads = LIMIT(0, worker_threads, 64);
//host
str = g_conf_ctx.parser->GetValue("host");
if (str.size() != 0)
{
g_conf_ctx.host = str;
}
else
{
g_conf_ctx.host = "0.0.0.0";
}
// port
int port = 0;
const char* szPort = get_arg("p");
if (szPort)
{
port = atoi(szPort);
}
if (port == 0)
{
port = g_conf_ctx.parser->Get<int>("port");
}
if (port == 0)
{
printf("Please config listen port!\n");
exit(-10);
}
g_conf_ctx.port = port;
str = g_conf_ctx.parser->GetValue("database");
if (str.size() != 0)
{
g_conf_ctx.dbname = str;
}
else
{
g_conf_ctx.dbname = "hjems";
}
hlogi("database = ('%s')", g_conf_ctx.dbname.c_str());
str = g_conf_ctx.parser->GetValue("dbuser");
if (str.size() != 0)
{
g_conf_ctx.dbuser = str;
}
else
{
g_conf_ctx.dbuser = "root";
}
hlogi("dbuser = ('%s')", g_conf_ctx.dbuser.c_str());
str = g_conf_ctx.parser->GetValue("dbserver");
if (str.size() != 0)
{
g_conf_ctx.dbserver = str;
}
else
{
g_conf_ctx.dbserver = "tcp://127.0.0.1:3306";
}
hlogi("dbserver = ('%s')", g_conf_ctx.dbserver.c_str());
hlogi("parse_confile('%s') OK", confile);
return 0;
}
static void on_reload(void* userdata)
{
hlogi("reload confile [%s]", g_main_ctx.confile);
parse_confile(g_main_ctx.confile);
}
//////1///////////////////////////////
#if 0
#define LOCKFILE "/var/lock/datahub.lock"
int lockfile(int fd)
{
struct flock fl;
fl.l_type = F_WRLCK;
fl.l_start = 0;
fl.l_whence = SEEK_SET;
fl.l_len = 0;
return fcntl(fd, F_SETLK, &fl);
}
int already_running(void)
{
int fd;
char buf[16];
fd = open(LOCKFILE, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
if (fd < 0)
{
fprintf(stderr, "FAILED TO OPEN FILE" LOCKFILE);
exit(1);
}
if (lockfile(fd) < 0)
{
if (EACCES == errno || EAGAIN == errno)
{
close(fd);
return 1;
}
fprintf(stderr, "FAILED TO LOCK FILE" LOCKFILE);
exit(1);
}
ftruncate(fd, 0);
sprintf(buf, "%ld", (long)getpid());
write(fd, buf, strlen(buf) + 1);
return 0;
}
#endif
/// end of checking only one instance
/// ////////////////////////////////////////////////
int main(int argc, char** argv)
{
#if 0
if (already_running())
{
printf("PROGRAM ALREADY RUNNING...\n");
exit(0);
}
#endif
// g_main_ctx
main_ctx_init(argc, argv);
if (argc == 1)
{
print_help();
exit(10);
}
// int ret = parse_opt(argc, argv, options);
int ret = parse_opt_long(argc, argv, long_options, ARRAY_SIZE(long_options));
if (ret != 0) {
print_help();
exit(ret);
}
/*
printf("---------------arg------------------------------\n");
printf("%s\n", g_main_ctx.cmdline);
for (int i = 0; i < g_main_ctx.arg_kv_size; ++i) {
printf("%s\n", g_main_ctx.arg_kv[i]);
}
for (int i = 0; i < g_main_ctx.arg_list_size; ++i) {
printf("%s\n", g_main_ctx.arg_list[i]);
}
printf("================================================\n");
printf("---------------env------------------------------\n");
for (int i = 0; i < g_main_ctx.envc; ++i) {
printf("%s\n", g_main_ctx.save_envp[i]);
}
printf("================================================\n");
*/
// help
if (get_arg("h"))
{
print_help();
exit(0);
}
// version
if (get_arg("v"))
{
print_version();
exit(0);
}
// g_conf_ctx
conf_ctx_init(&g_conf_ctx);
const char* confile = get_arg("c");
if (confile)
{
strncpy(g_main_ctx.confile, confile, sizeof(g_main_ctx.confile));
}
parse_confile(g_main_ctx.confile);
// test
if (get_arg("t"))
{
printf("Test confile [%s] OK!\n", g_main_ctx.confile);
exit(0);
}
// signal
signal_init(on_reload);
const char* signal = get_arg("s");
if (signal)
{
signal_handle(signal);
}
#ifdef OS_UNIX
// daemon
if (get_arg("d"))
{
// nochdir, noclose
int ret = daemon(1, 1);
if (ret != 0)
{
printf("daemon error: %d\n", ret);
exit(-10);
}
}
#endif
// pidfile
create_pidfile();
#if TEST_UNPACK
memset(&unpack_setting, 0, sizeof(unpack_setting_t));
unpack_setting.package_max_length = DEFAULT_PACKAGE_MAX_LENGTH;
unpack_setting.mode = UNPACK_BY_DELIMITER;
unpack_setting.delimiter[0] = 0xEE;
unpack_setting.delimiter[1] = 0xFF;
unpack_setting.delimiter[2] = 0xEE;
unpack_setting.delimiter[3] = 0xFF;
unpack_setting.delimiter_bytes = 4;
#endif
master_workers_run(worker_fn, (void*)(intptr_t)&g_conf_ctx, g_conf_ctx.worker_processes, g_conf_ctx.worker_threads);
hlogi("=========--- I'll be back! ---=========");
return 0;
}
static void on_close(hio_t* io)
{
hlogi("on_close fd=%d error=%d", hio_fd(io), hio_error(io));
}
std::string get_current_timestamp()
{
auto now = std::chrono::system_clock::now();
//通过不同精度获取相差的毫秒数
uint64_t dis_millseconds = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()).count()
- std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count() * 1000;
time_t tt = std::chrono::system_clock::to_time_t(now);
auto time_tm = localtime(&tt);
char strTime[25] = { 0 };
sprintf(strTime, "%d-%02d-%02d %02d:%02d:%02d.%03d", time_tm->tm_year + 1900,
time_tm->tm_mon + 1, time_tm->tm_mday, time_tm->tm_hour,
time_tm->tm_min, time_tm->tm_sec, (int)dis_millseconds);
return std::string(strTime);
}
// 函数用于将内存块转换为十六进制字符串
std::string printHex(const void* data, size_t size)
{
std::ostringstream oss;
std::ostringstream oss2;
std::ostringstream ossrow;
const size_t lineSize = 16; // 每行输出的字节数
const unsigned char* p = static_cast<const unsigned char*>(data);
int ic = 0;
int row = 0;
ossrow << std::setw(8) << std::setfill('0') << std::hex << row++ << "h : ";
oss << ossrow.str().c_str();
for (size_t i = 0; i < size; ++i)
{
ic++;
// 每个字节之间用空格分隔
oss << std::setw(2) << std::setfill('0') << std::hex << std::uppercase << static_cast<int>(p[i]);
char ch = (isprint(p[i]) != 0) ? p[i] : '.';
oss2 << ch;
// 每lineSize个字节换行
if ((i + 1) % lineSize == 0)
{
ossrow.clear();
ossrow.str("");
oss << " [" << oss2.str().c_str() << "]" << std::endl;
oss2.clear();
oss2.str("");
ossrow << std::setw(8) << std::setfill('0') << std::hex << row++ << "h : ";
oss << ossrow.str().c_str();
ic = 0;
}
else if (i == size - 1)
{
if ((i + 1) % lineSize != 0)
{
if (i % 2 != 0)
{
for (size_t j = 0; j < (lineSize - ic); j++)
{
oss << " --";
}
}
else
{
for (size_t j = 0; j < (lineSize - ic); j++)
{
oss << " --";
}
}
}
oss << " [" << oss2.str().c_str();
if ((i + 1) % lineSize != 0)
{
for (size_t j = 0; j < (lineSize - ic); j++)
{
oss << " ";
}
}
oss << "]" << std::endl;
oss2.clear();
oss2.str("");
ic = 0;
}
#if 0
else if ((i + 1) % 8 == 0)
{
oss << " ";
oss2 << " ";
}
#endif
else
{
oss << " ";
}
}
return oss.str();
}
//接收到数据
static void on_recv(hio_t* io, void* buf, int readbytes)
{
char localaddrstr[SOCKADDR_STRLEN] = { 0 };
char peeraddrstr[SOCKADDR_STRLEN] = { 0 };
hlogi("### 1 ### on_recv fd=%d readbytes=%d [%s] <==== [%s]", hio_fd(io), readbytes,
SOCKADDR_STR(hio_localaddr(io), localaddrstr),
SOCKADDR_STR(hio_peeraddr(io), peeraddrstr));
char ret[1] = { 0 };
if (readbytes > 0xFFFF - 1)
{
hloge("too large data buffer to process: %d", readbytes);
ret[0] = 1;
hio_write(io, (void*)ret, 1);
return;
}
MessageData* pData = (MessageData*)buf;
OpenJson json;
if (pData->content_len > 0xFFFF - 1)
{
hloge("too big string buffer to process: %d, it should be less than %d", pData->content_len, 0xFFFF);
ret[0] = 1;
hio_write(io, (void*)ret, 1);
return;
}
CODING buf_code = GetCoding((unsigned char*)pData->content_data, pData->content_len); //判断是否是utf-8
hlogi("<=== recieve buffer code is [%d]", buf_code);
std::string msg(pData->content_data, pData->content_len);
if (buf_code == CODING::GBK
|| buf_code == CODING::UNKOWN)
{
std::string str_result;
//转换为UTF8
if (!GBKToUTF8(msg, str_result))
{
hloge("Failed to transfer code from GBK to UTF-8");
ret[0] = 1;
hio_write(io, (void*)ret, 1);
return;
}
hlogi("Successfuly transfer code from GBK to UTF-8!");
msg = str_result;
}
#ifdef _DEBUG
hlogd("<=== recieve !!VALID!! mqtt pack len =[%d] data=[%s]", msg.length(), msg.c_str()); //这里还是好的
#endif
unsigned int len = msg.length();
char* pTmp = new char[len];
memcpy(pTmp, msg.c_str(), len);
std::shared_ptr<char> ptr; //放个智能指针省得忘记删除
ptr.reset(pTmp);
//hlogi("<=== decode OK, msg=[%s]", msg.c_str());
#if 0
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 17).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 18).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 19).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 20).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 21).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 22).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 23).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 24).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 25).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 26).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 27).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 28).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 29).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 30).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 31).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 32).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 33).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 34).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 61).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 62).c_str());
hlogi("<=== decode OK [\n%s\n]", printHex(pTmp, 63).c_str());
#endif
//hlogd("<=== decode OK [\n%s\n]", printHex(pTmp, len).c_str());
if (!json.decode(msg))
{
//delete[] pTmp;
hloge("Failed to decode json string pack , length=%d", readbytes);
ret[0] = 1;
hio_write(io, (void*)ret, 1);
return;
}
hio_write(io, (void*)ret, 1);
std::string fsucode = json["FsuCode"].s();
std::string msg_type = json["type"].s();
std::string timestamp = get_current_timestamp(); // json["TimeStamp"].s();
if (fsucode.length() == 0)
{
//delete[] pTmp;
hlogw("!!empty fsucode recieved!");
return;
}
hlogi("<=== decode OK, recieve fsucode=[%s] type=[%s] ts=[%s]", fsucode.c_str(), msg_type.c_str(), timestamp.c_str());
#ifdef _DEBUG
hlogd("<<<<Check Mem after decode here>>>> \n[\n%s\n]\n", printHex(pTmp, len).c_str());
#endif
std::string out_compress;
int zip_ret = 0;
if ((zip_ret = CompressString(pTmp, len, out_compress, Z_DEFAULT_COMPRESSION)) != Z_OK)
{
hloge("Failed to compress source data, zip return value %d", zip_ret);
return;
}
hlogd("<<<<Compress result: string size from original [%d] to [%d]", len, out_compress.size());
#ifdef _DEBUG
hlogd("<<<<Compress string here>>>> \n[\n%s\n]\n", printHex(out_compress.c_str(), out_compress.size()).c_str());
#endif
//std::string msg2(pTmp, len);
if (msg_type == "gateway-data"
|| msg_type == "gateway-alarmdata"
|| msg_type == "gateway-writedata"
|| msg_type == "gateway-readdata"
|| msg_type == "web-write"
|| msg_type == "web-alarm")
{
auto& IdCodeContent = json["IdCodeContent"];
if (IdCodeContent.size() <= 0)
{
//delete[] pTmp;
hloge("invalid IdCodeContent's size: %d", IdCodeContent.size());
return;
}
auto& pNode = IdCodeContent[0]; //这是只解析第一个节点
std::string oid = pNode["OID"].s();
OpDatabase::getInstance()->InsertMessage(timestamp, msg_type, fsucode, out_compress, (int)pData->mqtt_topic, (int)pData->device_id);
}
if (msg_type == "web-read")
{
auto& IdCodeContent = json["IdCodes"];
if (IdCodeContent.size() <= 0)
{
hloge("invalid IdCodes's size: %d", IdCodeContent.size());
//delete[] pTmp;
return;
}
auto& pNode = IdCodeContent[0]; //这是只解析第一个节点
std::string oid = pNode.s();
OpDatabase::getInstance()->InsertMessage(timestamp, msg_type, fsucode, out_compress, (int)pData->mqtt_topic, (int)pData->device_id);
}
//delete[] pTmp;
}
//接入回调
static void on_accept(hio_t* io)
{
hlogi("on_accept connfd=%d", hio_fd(io));
char localaddrstr[SOCKADDR_STRLEN] = { 0 };
char peeraddrstr[SOCKADDR_STRLEN] = { 0 };
hlogi("accept connfd=%d [%s] <=== [%s]", hio_fd(io),
SOCKADDR_STR(hio_localaddr(io), localaddrstr),
SOCKADDR_STR(hio_peeraddr(io), peeraddrstr));
hio_setcb_close(io, on_close);
hio_setcb_read(io, on_recv);
#if TEST_UNPACK
hio_set_unpack(io, &unpack_setting);
#endif
hio_read_start(io);
}
void worker_fn(void* userdata)
{
conf_ctx_t* ptrCtx = (conf_ctx_t*)(intptr_t)(userdata);
long port = ptrCtx->port;
//initialize database connection
bool dbok = OpDatabase::getInstance()->OpenDatabase(ptrCtx->dbserver,ptrCtx->dbuser,ptrCtx->dbname);
if (!dbok)
{
hloge("failed to open database, exit now...");
return;
}
hlogi("database connection created!");
hloop_t* loop = hloop_new(0);
const char* host = ptrCtx->host.c_str();
hio_t* listenio = hloop_create_tcp_server(loop, host, port, on_accept);
if (listenio == NULL)
{
hlogw("worker process finished");
return;
}
hlogi("port=%ld pid=%ld tid=%ld listenfd=%d", port, hv_getpid(), hv_gettid(), hio_fd(listenio));
hloop_run(loop);
hlogi("database connection close!");
OpDatabase::getInstance()->CloseDatabase();
hloop_free(&loop);
}