emsApplication/applications/WebConfigure/web/js/lib/3d/PMREMGenerator.js

961 lines
23 KiB
JavaScript

import {
CubeUVReflectionMapping,
GammaEncoding,
LinearEncoding,
NoToneMapping,
NearestFilter,
NoBlending,
RGBDEncoding,
RGBEEncoding,
RGBEFormat,
RGBM16Encoding,
RGBM7Encoding,
UnsignedByteType,
sRGBEncoding
} from "../constants.js";
import { BufferAttribute } from "../core/BufferAttribute.js";
import { BufferGeometry } from "../core/BufferGeometry.js";
import { Mesh } from "../objects/Mesh.js";
import { OrthographicCamera } from "../cameras/OrthographicCamera.js";
import { PerspectiveCamera } from "../cameras/PerspectiveCamera.js";
import { RawShaderMaterial } from "../materials/RawShaderMaterial.js";
import { Vector2 } from "../math/Vector2.js";
import { Vector3 } from "../math/Vector3.js";
import { WebGLRenderTarget } from "../renderers/WebGLRenderTarget.js";
const LOD_MIN = 4;
const LOD_MAX = 8;
const SIZE_MAX = Math.pow( 2, LOD_MAX );
// The standard deviations (radians) associated with the extra mips. These are
// chosen to approximate a Trowbridge-Reitz distribution function times the
// geometric shadowing function. These sigma values squared must match the
// variance #defines in cube_uv_reflection_fragment.glsl.js.
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
// The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
const MAX_SAMPLES = 20;
const ENCODINGS = {
[ LinearEncoding ]: 0,
[ sRGBEncoding ]: 1,
[ RGBEEncoding ]: 2,
[ RGBM7Encoding ]: 3,
[ RGBM16Encoding ]: 4,
[ RGBDEncoding ]: 5,
[ GammaEncoding ]: 6
};
const _flatCamera = new OrthographicCamera();
const { _lodPlanes, _sizeLods, _sigmas } = _createPlanes();
let _oldTarget = null;
// Golden Ratio
const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
const INV_PHI = 1 / PHI;
// Vertices of a dodecahedron (except the opposites, which represent the
// same axis), used as axis directions evenly spread on a sphere.
const _axisDirections = [
new Vector3( 1, 1, 1 ),
new Vector3( - 1, 1, 1 ),
new Vector3( 1, 1, - 1 ),
new Vector3( - 1, 1, - 1 ),
new Vector3( 0, PHI, INV_PHI ),
new Vector3( 0, PHI, - INV_PHI ),
new Vector3( INV_PHI, 0, PHI ),
new Vector3( - INV_PHI, 0, PHI ),
new Vector3( PHI, INV_PHI, 0 ),
new Vector3( - PHI, INV_PHI, 0 ) ];
/**
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
* (PMREM) from a cubeMap environment texture. This allows different levels of
* blur to be quickly accessed based on material roughness. It is packed into a
* special CubeUV format that allows us to perform custom interpolation so that
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
* higher roughness levels. In this way we maintain resolution to smoothly
* interpolate diffuse lighting while limiting sampling computation.
*/
function PMREMGenerator( renderer ) {
this._renderer = renderer;
this._pingPongRenderTarget = null;
this._blurMaterial = _getBlurShader( MAX_SAMPLES );
this._equirectShader = null;
this._cubemapShader = null;
this._compileMaterial( this._blurMaterial );
}
PMREMGenerator.prototype = {
constructor: PMREMGenerator,
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
* is placed at the origin).
*/
fromScene: function ( scene, sigma = 0, near = 0.1, far = 100 ) {
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets();
this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
if ( sigma > 0 ) {
this._blur( cubeUVRenderTarget, 0, 0, sigma );
}
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
},
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*/
fromEquirectangular: function ( equirectangular ) {
return this._fromTexture( equirectangular );
},
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
* as this matches best with the 256 x 256 cubemap output.
*/
fromCubemap: function ( cubemap ) {
return this._fromTexture( cubemap );
},
/**
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileCubemapShader: function () {
if ( this._cubemapShader === null ) {
this._cubemapShader = _getCubemapShader();
this._compileMaterial( this._cubemapShader );
}
},
/**
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileEquirectangularShader: function () {
if ( this._equirectShader === null ) {
this._equirectShader = _getEquirectShader();
this._compileMaterial( this._equirectShader );
}
},
/**
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
* one of them will cause any others to also become unusable.
*/
dispose: function () {
this._blurMaterial.dispose();
if ( this._cubemapShader !== null ) this._cubemapShader.dispose();
if ( this._equirectShader !== null ) this._equirectShader.dispose();
for ( let i = 0; i < _lodPlanes.length; i ++ ) {
_lodPlanes[ i ].dispose();
}
},
// private interface
_cleanup: function ( outputTarget ) {
this._pingPongRenderTarget.dispose();
this._renderer.setRenderTarget( _oldTarget );
outputTarget.scissorTest = false;
_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
},
_fromTexture: function ( texture ) {
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets( texture );
this._textureToCubeUV( texture, cubeUVRenderTarget );
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
},
_allocateTargets: function ( texture ) { // warning: null texture is valid
const params = {
magFilter: NearestFilter,
minFilter: NearestFilter,
generateMipmaps: false,
type: UnsignedByteType,
format: RGBEFormat,
encoding: _isLDR( texture ) ? texture.encoding : RGBEEncoding,
depthBuffer: false,
stencilBuffer: false
};
const cubeUVRenderTarget = _createRenderTarget( params );
cubeUVRenderTarget.depthBuffer = texture ? false : true;
this._pingPongRenderTarget = _createRenderTarget( params );
return cubeUVRenderTarget;
},
_compileMaterial: function ( material ) {
const tmpMesh = new Mesh( _lodPlanes[ 0 ], material );
this._renderer.compile( tmpMesh, _flatCamera );
},
_sceneToCubeUV: function ( scene, near, far, cubeUVRenderTarget ) {
const fov = 90;
const aspect = 1;
const cubeCamera = new PerspectiveCamera( fov, aspect, near, far );
const upSign = [ 1, - 1, 1, 1, 1, 1 ];
const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
const renderer = this._renderer;
const outputEncoding = renderer.outputEncoding;
const toneMapping = renderer.toneMapping;
const clearColor = renderer.getClearColor();
const clearAlpha = renderer.getClearAlpha();
renderer.toneMapping = NoToneMapping;
renderer.outputEncoding = LinearEncoding;
let background = scene.background;
if ( background && background.isColor ) {
background.convertSRGBToLinear();
// Convert linear to RGBE
const maxComponent = Math.max( background.r, background.g, background.b );
const fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 );
background = background.multiplyScalar( Math.pow( 2.0, - fExp ) );
const alpha = ( fExp + 128.0 ) / 255.0;
renderer.setClearColor( background, alpha );
scene.background = null;
}
for ( let i = 0; i < 6; i ++ ) {
const col = i % 3;
if ( col == 0 ) {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
} else if ( col == 1 ) {
cubeCamera.up.set( 0, 0, upSign[ i ] );
cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
} else {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
}
_setViewport( cubeUVRenderTarget,
col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX );
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.render( scene, cubeCamera );
}
renderer.toneMapping = toneMapping;
renderer.outputEncoding = outputEncoding;
renderer.setClearColor( clearColor, clearAlpha );
},
_textureToCubeUV: function ( texture, cubeUVRenderTarget ) {
const renderer = this._renderer;
if ( texture.isCubeTexture ) {
if ( this._cubemapShader == null ) {
this._cubemapShader = _getCubemapShader();
}
} else {
if ( this._equirectShader == null ) {
this._equirectShader = _getEquirectShader();
}
}
const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
const mesh = new Mesh( _lodPlanes[ 0 ], material );
const uniforms = material.uniforms;
uniforms[ 'envMap' ].value = texture;
if ( ! texture.isCubeTexture ) {
uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height );
}
uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ];
uniforms[ 'outputEncoding' ].value = ENCODINGS[ cubeUVRenderTarget.texture.encoding ];
_setViewport( cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX );
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.render( mesh, _flatCamera );
},
_applyPMREM: function ( cubeUVRenderTarget ) {
const renderer = this._renderer;
const autoClear = renderer.autoClear;
renderer.autoClear = false;
for ( let i = 1; i < TOTAL_LODS; i ++ ) {
const sigma = Math.sqrt( _sigmas[ i ] * _sigmas[ i ] - _sigmas[ i - 1 ] * _sigmas[ i - 1 ] );
const poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ];
this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
}
renderer.autoClear = autoClear;
},
/**
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
* vertically and horizontally, but this breaks down on a cube. Here we apply
* the blur latitudinally (around the poles), and then longitudinally (towards
* the poles) to approximate the orthogonally-separable blur. It is least
* accurate at the poles, but still does a decent job.
*/
_blur: function ( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
const pingPongRenderTarget = this._pingPongRenderTarget;
this._halfBlur(
cubeUVRenderTarget,
pingPongRenderTarget,
lodIn,
lodOut,
sigma,
'latitudinal',
poleAxis );
this._halfBlur(
pingPongRenderTarget,
cubeUVRenderTarget,
lodOut,
lodOut,
sigma,
'longitudinal',
poleAxis );
},
_halfBlur: function ( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
const renderer = this._renderer;
const blurMaterial = this._blurMaterial;
if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
console.error(
'blur direction must be either latitudinal or longitudinal!' );
}
// Number of standard deviations at which to cut off the discrete approximation.
const STANDARD_DEVIATIONS = 3;
const blurMesh = new Mesh( _lodPlanes[ lodOut ], blurMaterial );
const blurUniforms = blurMaterial.uniforms;
const pixels = _sizeLods[ lodIn ] - 1;
const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
const sigmaPixels = sigmaRadians / radiansPerPixel;
const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
if ( samples > MAX_SAMPLES ) {
console.warn( `sigmaRadians, ${
sigmaRadians}, is too large and will clip, as it requested ${
samples} samples when the maximum is set to ${MAX_SAMPLES}` );
}
const weights = [];
let sum = 0;
for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
const x = i / sigmaPixels;
const weight = Math.exp( - x * x / 2 );
weights.push( weight );
if ( i == 0 ) {
sum += weight;
} else if ( i < samples ) {
sum += 2 * weight;
}
}
for ( let i = 0; i < weights.length; i ++ ) {
weights[ i ] = weights[ i ] / sum;
}
blurUniforms[ 'envMap' ].value = targetIn.texture;
blurUniforms[ 'samples' ].value = samples;
blurUniforms[ 'weights' ].value = weights;
blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';
if ( poleAxis ) {
blurUniforms[ 'poleAxis' ].value = poleAxis;
}
blurUniforms[ 'dTheta' ].value = radiansPerPixel;
blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn;
blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
const outputSize = _sizeLods[ lodOut ];
const x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize );
const y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) + 2 * outputSize * ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 );
_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
renderer.setRenderTarget( targetOut );
renderer.render( blurMesh, _flatCamera );
}
};
function _isLDR( texture ) {
if ( texture === undefined || texture.type !== UnsignedByteType ) return false;
return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
}
function _createPlanes() {
const _lodPlanes = [];
const _sizeLods = [];
const _sigmas = [];
let lod = LOD_MAX;
for ( let i = 0; i < TOTAL_LODS; i ++ ) {
const sizeLod = Math.pow( 2, lod );
_sizeLods.push( sizeLod );
let sigma = 1.0 / sizeLod;
if ( i > LOD_MAX - LOD_MIN ) {
sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ];
} else if ( i == 0 ) {
sigma = 0;
}
_sigmas.push( sigma );
const texelSize = 1.0 / ( sizeLod - 1 );
const min = - texelSize / 2;
const max = 1 + texelSize / 2;
const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
const cubeFaces = 6;
const vertices = 6;
const positionSize = 3;
const uvSize = 2;
const faceIndexSize = 1;
const position = new Float32Array( positionSize * vertices * cubeFaces );
const uv = new Float32Array( uvSize * vertices * cubeFaces );
const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
for ( let face = 0; face < cubeFaces; face ++ ) {
const x = ( face % 3 ) * 2 / 3 - 1;
const y = face > 2 ? 0 : - 1;
const coordinates = [
x, y, 0,
x + 2 / 3, y, 0,
x + 2 / 3, y + 1, 0,
x, y, 0,
x + 2 / 3, y + 1, 0,
x, y + 1, 0
];
position.set( coordinates, positionSize * vertices * face );
uv.set( uv1, uvSize * vertices * face );
const fill = [ face, face, face, face, face, face ];
faceIndex.set( fill, faceIndexSize * vertices * face );
}
const planes = new BufferGeometry();
planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
_lodPlanes.push( planes );
if ( lod > LOD_MIN ) {
lod --;
}
}
return { _lodPlanes, _sizeLods, _sigmas };
}
function _createRenderTarget( params ) {
const cubeUVRenderTarget = new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params );
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
cubeUVRenderTarget.scissorTest = true;
return cubeUVRenderTarget;
}
function _setViewport( target, x, y, width, height ) {
target.viewport.set( x, y, width, height );
target.scissor.set( x, y, width, height );
}
function _getBlurShader( maxSamples ) {
const weights = new Float32Array( maxSamples );
const poleAxis = new Vector3( 0, 1, 0 );
const shaderMaterial = new RawShaderMaterial( {
name: 'SphericalGaussianBlur',
defines: { 'n': maxSamples },
uniforms: {
'envMap': { value: null },
'samples': { value: 1 },
'weights': { value: weights },
'latitudinal': { value: false },
'dTheta': { value: 0 },
'mipInt': { value: 0 },
'poleAxis': { value: poleAxis },
'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform int samples;
uniform float weights[ n ];
uniform bool latitudinal;
uniform float dTheta;
uniform float mipInt;
uniform vec3 poleAxis;
${ _getEncodings() }
#define ENVMAP_TYPE_CUBE_UV
#include <cube_uv_reflection_fragment>
vec3 getSample( float theta, vec3 axis ) {
float cosTheta = cos( theta );
// Rodrigues' axis-angle rotation
vec3 sampleDirection = vOutputDirection * cosTheta
+ cross( axis, vOutputDirection ) * sin( theta )
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
return bilinearCubeUV( envMap, sampleDirection, mipInt );
}
void main() {
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
}
axis = normalize( axis );
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
for ( int i = 1; i < n; i++ ) {
if ( i >= samples ) {
break;
}
float theta = dTheta * float( i );
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
}
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
return shaderMaterial;
}
function _getEquirectShader() {
const texelSize = new Vector2( 1, 1 );
const shaderMaterial = new RawShaderMaterial( {
name: 'EquirectangularToCubeUV',
uniforms: {
'envMap': { value: null },
'texelSize': { value: texelSize },
'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform vec2 texelSize;
${ _getEncodings() }
#include <common>
void main() {
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
vec3 outputDirection = normalize( vOutputDirection );
vec2 uv = equirectUv( outputDirection );
vec2 f = fract( uv / texelSize - 0.5 );
uv -= f * texelSize;
vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.x += texelSize.x;
vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.y += texelSize.y;
vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.x -= texelSize.x;
vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
vec3 tm = mix( tl, tr, f.x );
vec3 bm = mix( bl, br, f.x );
gl_FragColor.rgb = mix( tm, bm, f.y );
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
return shaderMaterial;
}
function _getCubemapShader() {
const shaderMaterial = new RawShaderMaterial( {
name: 'CubemapToCubeUV',
uniforms: {
'envMap': { value: null },
'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform samplerCube envMap;
${ _getEncodings() }
void main() {
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
return shaderMaterial;
}
function _getCommonVertexShader() {
return /* glsl */`
precision mediump float;
precision mediump int;
attribute vec3 position;
attribute vec2 uv;
attribute float faceIndex;
varying vec3 vOutputDirection;
// RH coordinate system; PMREM face-indexing convention
vec3 getDirection( vec2 uv, float face ) {
uv = 2.0 * uv - 1.0;
vec3 direction = vec3( uv, 1.0 );
if ( face == 0.0 ) {
direction = direction.zyx; // ( 1, v, u ) pos x
} else if ( face == 1.0 ) {
direction = direction.xzy;
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
} else if ( face == 2.0 ) {
direction.x *= -1.0; // ( -u, v, 1 ) pos z
} else if ( face == 3.0 ) {
direction = direction.zyx;
direction.xz *= -1.0; // ( -1, v, -u ) neg x
} else if ( face == 4.0 ) {
direction = direction.xzy;
direction.xy *= -1.0; // ( -u, -1, v ) neg y
} else if ( face == 5.0 ) {
direction.z *= -1.0; // ( u, v, -1 ) neg z
}
return direction;
}
void main() {
vOutputDirection = getDirection( uv, faceIndex );
gl_Position = vec4( position, 1.0 );
}
`;
}
function _getEncodings() {
return /* glsl */`
uniform int inputEncoding;
uniform int outputEncoding;
#include <encodings_pars_fragment>
vec4 inputTexelToLinear( vec4 value ) {
if ( inputEncoding == 0 ) {
return value;
} else if ( inputEncoding == 1 ) {
return sRGBToLinear( value );
} else if ( inputEncoding == 2 ) {
return RGBEToLinear( value );
} else if ( inputEncoding == 3 ) {
return RGBMToLinear( value, 7.0 );
} else if ( inputEncoding == 4 ) {
return RGBMToLinear( value, 16.0 );
} else if ( inputEncoding == 5 ) {
return RGBDToLinear( value, 256.0 );
} else {
return GammaToLinear( value, 2.2 );
}
}
vec4 linearToOutputTexel( vec4 value ) {
if ( outputEncoding == 0 ) {
return value;
} else if ( outputEncoding == 1 ) {
return LinearTosRGB( value );
} else if ( outputEncoding == 2 ) {
return LinearToRGBE( value );
} else if ( outputEncoding == 3 ) {
return LinearToRGBM( value, 7.0 );
} else if ( outputEncoding == 4 ) {
return LinearToRGBM( value, 16.0 );
} else if ( outputEncoding == 5 ) {
return LinearToRGBD( value, 256.0 );
} else {
return LinearToGamma( value, 2.2 );
}
}
vec4 envMapTexelToLinear( vec4 color ) {
return inputTexelToLinear( color );
}
`;
}
export { PMREMGenerator };