emsApplication/3rdPartner/libhv/event/wepoll/wepoll.c

2254 lines
68 KiB
C

/*
* wepoll - epoll for Windows
* https://github.com/piscisaureus/wepoll
*
* Copyright 2012-2020, Bert Belder <bertbelder@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WEPOLL_EXPORT
#define WEPOLL_EXPORT
#endif
#include <stdint.h>
enum EPOLL_EVENTS {
EPOLLIN = (int) (1U << 0),
EPOLLPRI = (int) (1U << 1),
EPOLLOUT = (int) (1U << 2),
EPOLLERR = (int) (1U << 3),
EPOLLHUP = (int) (1U << 4),
EPOLLRDNORM = (int) (1U << 6),
EPOLLRDBAND = (int) (1U << 7),
EPOLLWRNORM = (int) (1U << 8),
EPOLLWRBAND = (int) (1U << 9),
EPOLLMSG = (int) (1U << 10), /* Never reported. */
EPOLLRDHUP = (int) (1U << 13),
EPOLLONESHOT = (int) (1U << 31)
};
#define EPOLLIN (1U << 0)
#define EPOLLPRI (1U << 1)
#define EPOLLOUT (1U << 2)
#define EPOLLERR (1U << 3)
#define EPOLLHUP (1U << 4)
#define EPOLLRDNORM (1U << 6)
#define EPOLLRDBAND (1U << 7)
#define EPOLLWRNORM (1U << 8)
#define EPOLLWRBAND (1U << 9)
#define EPOLLMSG (1U << 10)
#define EPOLLRDHUP (1U << 13)
#define EPOLLONESHOT (1U << 31)
#define EPOLL_CTL_ADD 1
#define EPOLL_CTL_MOD 2
#define EPOLL_CTL_DEL 3
typedef void* HANDLE;
typedef uintptr_t SOCKET;
typedef union epoll_data {
void* ptr;
int fd;
uint32_t u32;
uint64_t u64;
SOCKET sock; /* Windows specific */
HANDLE hnd; /* Windows specific */
} epoll_data_t;
struct epoll_event {
uint32_t events; /* Epoll events and flags */
epoll_data_t data; /* User data variable */
};
#ifdef __cplusplus
extern "C" {
#endif
WEPOLL_EXPORT HANDLE epoll_create(int size);
WEPOLL_EXPORT HANDLE epoll_create1(int flags);
WEPOLL_EXPORT int epoll_close(HANDLE ephnd);
WEPOLL_EXPORT int epoll_ctl(HANDLE ephnd,
int op,
SOCKET sock,
struct epoll_event* event);
WEPOLL_EXPORT int epoll_wait(HANDLE ephnd,
struct epoll_event* events,
int maxevents,
int timeout);
#ifdef __cplusplus
} /* extern "C" */
#endif
#include <assert.h>
#include <stdlib.h>
#define WEPOLL_INTERNAL static
#define WEPOLL_INTERNAL_EXTERN static
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnonportable-system-include-path"
#pragma clang diagnostic ignored "-Wreserved-id-macro"
#elif defined(_MSC_VER)
#pragma warning(push, 1)
#endif
#undef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#undef _WIN32_WINNT
#define _WIN32_WINNT 0x0600
#include <winsock2.h>
#include <ws2tcpip.h>
#include <windows.h>
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(_MSC_VER)
#pragma warning(pop)
#endif
WEPOLL_INTERNAL int nt_global_init(void);
typedef LONG NTSTATUS;
typedef NTSTATUS* PNTSTATUS;
#ifndef NT_SUCCESS
#define NT_SUCCESS(status) (((NTSTATUS)(status)) >= 0)
#endif
#ifndef STATUS_SUCCESS
#define STATUS_SUCCESS ((NTSTATUS) 0x00000000L)
#endif
#ifndef STATUS_PENDING
#define STATUS_PENDING ((NTSTATUS) 0x00000103L)
#endif
#ifndef STATUS_CANCELLED
#define STATUS_CANCELLED ((NTSTATUS) 0xC0000120L)
#endif
#ifndef STATUS_NOT_FOUND
#define STATUS_NOT_FOUND ((NTSTATUS) 0xC0000225L)
#endif
typedef struct _IO_STATUS_BLOCK {
NTSTATUS Status;
ULONG_PTR Information;
} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;
typedef VOID(NTAPI* PIO_APC_ROUTINE)(PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
ULONG Reserved);
typedef struct _UNICODE_STRING {
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;
} UNICODE_STRING, *PUNICODE_STRING;
#define RTL_CONSTANT_STRING(s) \
{ sizeof(s) - sizeof((s)[0]), sizeof(s), s }
typedef struct _OBJECT_ATTRIBUTES {
ULONG Length;
HANDLE RootDirectory;
PUNICODE_STRING ObjectName;
ULONG Attributes;
PVOID SecurityDescriptor;
PVOID SecurityQualityOfService;
} OBJECT_ATTRIBUTES, *POBJECT_ATTRIBUTES;
#define RTL_CONSTANT_OBJECT_ATTRIBUTES(ObjectName, Attributes) \
{ sizeof(OBJECT_ATTRIBUTES), NULL, ObjectName, Attributes, NULL, NULL }
#ifndef FILE_OPEN
#define FILE_OPEN 0x00000001UL
#endif
#define KEYEDEVENT_WAIT 0x00000001UL
#define KEYEDEVENT_WAKE 0x00000002UL
#define KEYEDEVENT_ALL_ACCESS \
(STANDARD_RIGHTS_REQUIRED | KEYEDEVENT_WAIT | KEYEDEVENT_WAKE)
#define NT_NTDLL_IMPORT_LIST(X) \
X(NTSTATUS, \
NTAPI, \
NtCancelIoFileEx, \
(HANDLE FileHandle, \
PIO_STATUS_BLOCK IoRequestToCancel, \
PIO_STATUS_BLOCK IoStatusBlock)) \
\
X(NTSTATUS, \
NTAPI, \
NtCreateFile, \
(PHANDLE FileHandle, \
ACCESS_MASK DesiredAccess, \
POBJECT_ATTRIBUTES ObjectAttributes, \
PIO_STATUS_BLOCK IoStatusBlock, \
PLARGE_INTEGER AllocationSize, \
ULONG FileAttributes, \
ULONG ShareAccess, \
ULONG CreateDisposition, \
ULONG CreateOptions, \
PVOID EaBuffer, \
ULONG EaLength)) \
\
X(NTSTATUS, \
NTAPI, \
NtCreateKeyedEvent, \
(PHANDLE KeyedEventHandle, \
ACCESS_MASK DesiredAccess, \
POBJECT_ATTRIBUTES ObjectAttributes, \
ULONG Flags)) \
\
X(NTSTATUS, \
NTAPI, \
NtDeviceIoControlFile, \
(HANDLE FileHandle, \
HANDLE Event, \
PIO_APC_ROUTINE ApcRoutine, \
PVOID ApcContext, \
PIO_STATUS_BLOCK IoStatusBlock, \
ULONG IoControlCode, \
PVOID InputBuffer, \
ULONG InputBufferLength, \
PVOID OutputBuffer, \
ULONG OutputBufferLength)) \
\
X(NTSTATUS, \
NTAPI, \
NtReleaseKeyedEvent, \
(HANDLE KeyedEventHandle, \
PVOID KeyValue, \
BOOLEAN Alertable, \
PLARGE_INTEGER Timeout)) \
\
X(NTSTATUS, \
NTAPI, \
NtWaitForKeyedEvent, \
(HANDLE KeyedEventHandle, \
PVOID KeyValue, \
BOOLEAN Alertable, \
PLARGE_INTEGER Timeout)) \
\
X(ULONG, WINAPI, RtlNtStatusToDosError, (NTSTATUS Status))
#define X(return_type, attributes, name, parameters) \
WEPOLL_INTERNAL_EXTERN return_type(attributes* name) parameters;
NT_NTDLL_IMPORT_LIST(X)
#undef X
#define AFD_POLL_RECEIVE 0x0001
#define AFD_POLL_RECEIVE_EXPEDITED 0x0002
#define AFD_POLL_SEND 0x0004
#define AFD_POLL_DISCONNECT 0x0008
#define AFD_POLL_ABORT 0x0010
#define AFD_POLL_LOCAL_CLOSE 0x0020
#define AFD_POLL_ACCEPT 0x0080
#define AFD_POLL_CONNECT_FAIL 0x0100
typedef struct _AFD_POLL_HANDLE_INFO {
HANDLE Handle;
ULONG Events;
NTSTATUS Status;
} AFD_POLL_HANDLE_INFO, *PAFD_POLL_HANDLE_INFO;
typedef struct _AFD_POLL_INFO {
LARGE_INTEGER Timeout;
ULONG NumberOfHandles;
ULONG Exclusive;
AFD_POLL_HANDLE_INFO Handles[1];
} AFD_POLL_INFO, *PAFD_POLL_INFO;
WEPOLL_INTERNAL int afd_create_device_handle(HANDLE iocp_handle,
HANDLE* afd_device_handle_out);
WEPOLL_INTERNAL int afd_poll(HANDLE afd_device_handle,
AFD_POLL_INFO* poll_info,
IO_STATUS_BLOCK* io_status_block);
WEPOLL_INTERNAL int afd_cancel_poll(HANDLE afd_device_handle,
IO_STATUS_BLOCK* io_status_block);
#define return_map_error(value) \
do { \
err_map_win_error(); \
return (value); \
} while (0)
#define return_set_error(value, error) \
do { \
err_set_win_error(error); \
return (value); \
} while (0)
WEPOLL_INTERNAL void err_map_win_error(void);
WEPOLL_INTERNAL void err_set_win_error(DWORD error);
WEPOLL_INTERNAL int err_check_handle(HANDLE handle);
#define IOCTL_AFD_POLL 0x00012024
static UNICODE_STRING afd__device_name =
RTL_CONSTANT_STRING(L"\\Device\\Afd\\Wepoll");
static OBJECT_ATTRIBUTES afd__device_attributes =
RTL_CONSTANT_OBJECT_ATTRIBUTES(&afd__device_name, 0);
int afd_create_device_handle(HANDLE iocp_handle,
HANDLE* afd_device_handle_out) {
HANDLE afd_device_handle;
IO_STATUS_BLOCK iosb;
NTSTATUS status;
/* By opening \Device\Afd without specifying any extended attributes, we'll
* get a handle that lets us talk to the AFD driver, but that doesn't have an
* associated endpoint (so it's not a socket). */
status = NtCreateFile(&afd_device_handle,
SYNCHRONIZE,
&afd__device_attributes,
&iosb,
NULL,
0,
FILE_SHARE_READ | FILE_SHARE_WRITE,
FILE_OPEN,
0,
NULL,
0);
if (status != STATUS_SUCCESS)
return_set_error(-1, RtlNtStatusToDosError(status));
if (CreateIoCompletionPort(afd_device_handle, iocp_handle, 0, 0) == NULL)
goto error;
if (!SetFileCompletionNotificationModes(afd_device_handle,
FILE_SKIP_SET_EVENT_ON_HANDLE))
goto error;
*afd_device_handle_out = afd_device_handle;
return 0;
error:
CloseHandle(afd_device_handle);
return_map_error(-1);
}
int afd_poll(HANDLE afd_device_handle,
AFD_POLL_INFO* poll_info,
IO_STATUS_BLOCK* io_status_block) {
NTSTATUS status;
/* Blocking operation is not supported. */
assert(io_status_block != NULL);
io_status_block->Status = STATUS_PENDING;
status = NtDeviceIoControlFile(afd_device_handle,
NULL,
NULL,
io_status_block,
io_status_block,
IOCTL_AFD_POLL,
poll_info,
sizeof *poll_info,
poll_info,
sizeof *poll_info);
if (status == STATUS_SUCCESS)
return 0;
else if (status == STATUS_PENDING)
return_set_error(-1, ERROR_IO_PENDING);
else
return_set_error(-1, RtlNtStatusToDosError(status));
}
int afd_cancel_poll(HANDLE afd_device_handle,
IO_STATUS_BLOCK* io_status_block) {
NTSTATUS cancel_status;
IO_STATUS_BLOCK cancel_iosb;
/* If the poll operation has already completed or has been cancelled earlier,
* there's nothing left for us to do. */
if (io_status_block->Status != STATUS_PENDING)
return 0;
cancel_status =
NtCancelIoFileEx(afd_device_handle, io_status_block, &cancel_iosb);
/* NtCancelIoFileEx() may return STATUS_NOT_FOUND if the operation completed
* just before calling NtCancelIoFileEx(). This is not an error. */
if (cancel_status == STATUS_SUCCESS || cancel_status == STATUS_NOT_FOUND)
return 0;
else
return_set_error(-1, RtlNtStatusToDosError(cancel_status));
}
WEPOLL_INTERNAL int epoll_global_init(void);
WEPOLL_INTERNAL int init(void);
typedef struct port_state port_state_t;
typedef struct queue queue_t;
typedef struct sock_state sock_state_t;
typedef struct ts_tree_node ts_tree_node_t;
WEPOLL_INTERNAL port_state_t* port_new(HANDLE* iocp_handle_out);
WEPOLL_INTERNAL int port_close(port_state_t* port_state);
WEPOLL_INTERNAL int port_delete(port_state_t* port_state);
WEPOLL_INTERNAL int port_wait(port_state_t* port_state,
struct epoll_event* events,
int maxevents,
int timeout);
WEPOLL_INTERNAL int port_ctl(port_state_t* port_state,
int op,
SOCKET sock,
struct epoll_event* ev);
WEPOLL_INTERNAL int port_register_socket(port_state_t* port_state,
sock_state_t* sock_state,
SOCKET socket);
WEPOLL_INTERNAL void port_unregister_socket(port_state_t* port_state,
sock_state_t* sock_state);
WEPOLL_INTERNAL sock_state_t* port_find_socket(port_state_t* port_state,
SOCKET socket);
WEPOLL_INTERNAL void port_request_socket_update(port_state_t* port_state,
sock_state_t* sock_state);
WEPOLL_INTERNAL void port_cancel_socket_update(port_state_t* port_state,
sock_state_t* sock_state);
WEPOLL_INTERNAL void port_add_deleted_socket(port_state_t* port_state,
sock_state_t* sock_state);
WEPOLL_INTERNAL void port_remove_deleted_socket(port_state_t* port_state,
sock_state_t* sock_state);
WEPOLL_INTERNAL HANDLE port_get_iocp_handle(port_state_t* port_state);
WEPOLL_INTERNAL queue_t* port_get_poll_group_queue(port_state_t* port_state);
WEPOLL_INTERNAL port_state_t* port_state_from_handle_tree_node(
ts_tree_node_t* tree_node);
WEPOLL_INTERNAL ts_tree_node_t* port_state_to_handle_tree_node(
port_state_t* port_state);
/* The reflock is a special kind of lock that normally prevents a chunk of
* memory from being freed, but does allow the chunk of memory to eventually be
* released in a coordinated fashion.
*
* Under normal operation, threads increase and decrease the reference count,
* which are wait-free operations.
*
* Exactly once during the reflock's lifecycle, a thread holding a reference to
* the lock may "destroy" the lock; this operation blocks until all other
* threads holding a reference to the lock have dereferenced it. After
* "destroy" returns, the calling thread may assume that no other threads have
* a reference to the lock.
*
* Attemmpting to lock or destroy a lock after reflock_unref_and_destroy() has
* been called is invalid and results in undefined behavior. Therefore the user
* should use another lock to guarantee that this can't happen.
*/
typedef struct reflock {
volatile long state; /* 32-bit Interlocked APIs operate on `long` values. */
} reflock_t;
WEPOLL_INTERNAL int reflock_global_init(void);
WEPOLL_INTERNAL void reflock_init(reflock_t* reflock);
WEPOLL_INTERNAL void reflock_ref(reflock_t* reflock);
WEPOLL_INTERNAL void reflock_unref(reflock_t* reflock);
WEPOLL_INTERNAL void reflock_unref_and_destroy(reflock_t* reflock);
#include <stdbool.h>
/* N.b.: the tree functions do not set errno or LastError when they fail. Each
* of the API functions has at most one failure mode. It is up to the caller to
* set an appropriate error code when necessary. */
typedef struct tree tree_t;
typedef struct tree_node tree_node_t;
typedef struct tree {
tree_node_t* root;
} tree_t;
typedef struct tree_node {
tree_node_t* left;
tree_node_t* right;
tree_node_t* parent;
uintptr_t key;
bool red;
} tree_node_t;
WEPOLL_INTERNAL void tree_init(tree_t* tree);
WEPOLL_INTERNAL void tree_node_init(tree_node_t* node);
WEPOLL_INTERNAL int tree_add(tree_t* tree, tree_node_t* node, uintptr_t key);
WEPOLL_INTERNAL void tree_del(tree_t* tree, tree_node_t* node);
WEPOLL_INTERNAL tree_node_t* tree_find(const tree_t* tree, uintptr_t key);
WEPOLL_INTERNAL tree_node_t* tree_root(const tree_t* tree);
typedef struct ts_tree {
tree_t tree;
SRWLOCK lock;
} ts_tree_t;
typedef struct ts_tree_node {
tree_node_t tree_node;
reflock_t reflock;
} ts_tree_node_t;
WEPOLL_INTERNAL void ts_tree_init(ts_tree_t* rtl);
WEPOLL_INTERNAL void ts_tree_node_init(ts_tree_node_t* node);
WEPOLL_INTERNAL int ts_tree_add(ts_tree_t* ts_tree,
ts_tree_node_t* node,
uintptr_t key);
WEPOLL_INTERNAL ts_tree_node_t* ts_tree_del_and_ref(ts_tree_t* ts_tree,
uintptr_t key);
WEPOLL_INTERNAL ts_tree_node_t* ts_tree_find_and_ref(ts_tree_t* ts_tree,
uintptr_t key);
WEPOLL_INTERNAL void ts_tree_node_unref(ts_tree_node_t* node);
WEPOLL_INTERNAL void ts_tree_node_unref_and_destroy(ts_tree_node_t* node);
static ts_tree_t epoll__handle_tree;
int epoll_global_init(void) {
ts_tree_init(&epoll__handle_tree);
return 0;
}
static HANDLE epoll__create(void) {
port_state_t* port_state;
HANDLE ephnd;
ts_tree_node_t* tree_node;
if (init() < 0)
return NULL;
port_state = port_new(&ephnd);
if (port_state == NULL)
return NULL;
tree_node = port_state_to_handle_tree_node(port_state);
if (ts_tree_add(&epoll__handle_tree, tree_node, (uintptr_t) ephnd) < 0) {
/* This should never happen. */
port_delete(port_state);
return_set_error(NULL, ERROR_ALREADY_EXISTS);
}
return ephnd;
}
HANDLE epoll_create(int size) {
if (size <= 0)
return_set_error(NULL, ERROR_INVALID_PARAMETER);
return epoll__create();
}
HANDLE epoll_create1(int flags) {
if (flags != 0)
return_set_error(NULL, ERROR_INVALID_PARAMETER);
return epoll__create();
}
int epoll_close(HANDLE ephnd) {
ts_tree_node_t* tree_node;
port_state_t* port_state;
if (init() < 0)
return -1;
tree_node = ts_tree_del_and_ref(&epoll__handle_tree, (uintptr_t) ephnd);
if (tree_node == NULL) {
err_set_win_error(ERROR_INVALID_PARAMETER);
goto err;
}
port_state = port_state_from_handle_tree_node(tree_node);
port_close(port_state);
ts_tree_node_unref_and_destroy(tree_node);
return port_delete(port_state);
err:
err_check_handle(ephnd);
return -1;
}
int epoll_ctl(HANDLE ephnd, int op, SOCKET sock, struct epoll_event* ev) {
ts_tree_node_t* tree_node;
port_state_t* port_state;
int r;
if (init() < 0)
return -1;
tree_node = ts_tree_find_and_ref(&epoll__handle_tree, (uintptr_t) ephnd);
if (tree_node == NULL) {
err_set_win_error(ERROR_INVALID_PARAMETER);
goto err;
}
port_state = port_state_from_handle_tree_node(tree_node);
r = port_ctl(port_state, op, sock, ev);
ts_tree_node_unref(tree_node);
if (r < 0)
goto err;
return 0;
err:
/* On Linux, in the case of epoll_ctl(), EBADF takes priority over other
* errors. Wepoll mimics this behavior. */
err_check_handle(ephnd);
err_check_handle((HANDLE) sock);
return -1;
}
int epoll_wait(HANDLE ephnd,
struct epoll_event* events,
int maxevents,
int timeout) {
ts_tree_node_t* tree_node;
port_state_t* port_state;
int num_events;
if (maxevents <= 0)
return_set_error(-1, ERROR_INVALID_PARAMETER);
if (init() < 0)
return -1;
tree_node = ts_tree_find_and_ref(&epoll__handle_tree, (uintptr_t) ephnd);
if (tree_node == NULL) {
err_set_win_error(ERROR_INVALID_PARAMETER);
goto err;
}
port_state = port_state_from_handle_tree_node(tree_node);
num_events = port_wait(port_state, events, maxevents, timeout);
ts_tree_node_unref(tree_node);
if (num_events < 0)
goto err;
return num_events;
err:
err_check_handle(ephnd);
return -1;
}
#include <errno.h>
#define ERR__ERRNO_MAPPINGS(X) \
X(ERROR_ACCESS_DENIED, EACCES) \
X(ERROR_ALREADY_EXISTS, EEXIST) \
X(ERROR_BAD_COMMAND, EACCES) \
X(ERROR_BAD_EXE_FORMAT, ENOEXEC) \
X(ERROR_BAD_LENGTH, EACCES) \
X(ERROR_BAD_NETPATH, ENOENT) \
X(ERROR_BAD_NET_NAME, ENOENT) \
X(ERROR_BAD_NET_RESP, ENETDOWN) \
X(ERROR_BAD_PATHNAME, ENOENT) \
X(ERROR_BROKEN_PIPE, EPIPE) \
X(ERROR_CANNOT_MAKE, EACCES) \
X(ERROR_COMMITMENT_LIMIT, ENOMEM) \
X(ERROR_CONNECTION_ABORTED, ECONNABORTED) \
X(ERROR_CONNECTION_ACTIVE, EISCONN) \
X(ERROR_CONNECTION_REFUSED, ECONNREFUSED) \
X(ERROR_CRC, EACCES) \
X(ERROR_DIR_NOT_EMPTY, ENOTEMPTY) \
X(ERROR_DISK_FULL, ENOSPC) \
X(ERROR_DUP_NAME, EADDRINUSE) \
X(ERROR_FILENAME_EXCED_RANGE, ENOENT) \
X(ERROR_FILE_NOT_FOUND, ENOENT) \
X(ERROR_GEN_FAILURE, EACCES) \
X(ERROR_GRACEFUL_DISCONNECT, EPIPE) \
X(ERROR_HOST_DOWN, EHOSTUNREACH) \
X(ERROR_HOST_UNREACHABLE, EHOSTUNREACH) \
X(ERROR_INSUFFICIENT_BUFFER, EFAULT) \
X(ERROR_INVALID_ADDRESS, EADDRNOTAVAIL) \
X(ERROR_INVALID_FUNCTION, EINVAL) \
X(ERROR_INVALID_HANDLE, EBADF) \
X(ERROR_INVALID_NETNAME, EADDRNOTAVAIL) \
X(ERROR_INVALID_PARAMETER, EINVAL) \
X(ERROR_INVALID_USER_BUFFER, EMSGSIZE) \
X(ERROR_IO_PENDING, EINPROGRESS) \
X(ERROR_LOCK_VIOLATION, EACCES) \
X(ERROR_MORE_DATA, EMSGSIZE) \
X(ERROR_NETNAME_DELETED, ECONNABORTED) \
X(ERROR_NETWORK_ACCESS_DENIED, EACCES) \
X(ERROR_NETWORK_BUSY, ENETDOWN) \
X(ERROR_NETWORK_UNREACHABLE, ENETUNREACH) \
X(ERROR_NOACCESS, EFAULT) \
X(ERROR_NONPAGED_SYSTEM_RESOURCES, ENOMEM) \
X(ERROR_NOT_ENOUGH_MEMORY, ENOMEM) \
X(ERROR_NOT_ENOUGH_QUOTA, ENOMEM) \
X(ERROR_NOT_FOUND, ENOENT) \
X(ERROR_NOT_LOCKED, EACCES) \
X(ERROR_NOT_READY, EACCES) \
X(ERROR_NOT_SAME_DEVICE, EXDEV) \
X(ERROR_NOT_SUPPORTED, ENOTSUP) \
X(ERROR_NO_MORE_FILES, ENOENT) \
X(ERROR_NO_SYSTEM_RESOURCES, ENOMEM) \
X(ERROR_OPERATION_ABORTED, EINTR) \
X(ERROR_OUT_OF_PAPER, EACCES) \
X(ERROR_PAGED_SYSTEM_RESOURCES, ENOMEM) \
X(ERROR_PAGEFILE_QUOTA, ENOMEM) \
X(ERROR_PATH_NOT_FOUND, ENOENT) \
X(ERROR_PIPE_NOT_CONNECTED, EPIPE) \
X(ERROR_PORT_UNREACHABLE, ECONNRESET) \
X(ERROR_PROTOCOL_UNREACHABLE, ENETUNREACH) \
X(ERROR_REM_NOT_LIST, ECONNREFUSED) \
X(ERROR_REQUEST_ABORTED, EINTR) \
X(ERROR_REQ_NOT_ACCEP, EWOULDBLOCK) \
X(ERROR_SECTOR_NOT_FOUND, EACCES) \
X(ERROR_SEM_TIMEOUT, ETIMEDOUT) \
X(ERROR_SHARING_VIOLATION, EACCES) \
X(ERROR_TOO_MANY_NAMES, ENOMEM) \
X(ERROR_TOO_MANY_OPEN_FILES, EMFILE) \
X(ERROR_UNEXP_NET_ERR, ECONNABORTED) \
X(ERROR_WAIT_NO_CHILDREN, ECHILD) \
X(ERROR_WORKING_SET_QUOTA, ENOMEM) \
X(ERROR_WRITE_PROTECT, EACCES) \
X(ERROR_WRONG_DISK, EACCES) \
X(WSAEACCES, EACCES) \
X(WSAEADDRINUSE, EADDRINUSE) \
X(WSAEADDRNOTAVAIL, EADDRNOTAVAIL) \
X(WSAEAFNOSUPPORT, EAFNOSUPPORT) \
X(WSAECONNABORTED, ECONNABORTED) \
X(WSAECONNREFUSED, ECONNREFUSED) \
X(WSAECONNRESET, ECONNRESET) \
X(WSAEDISCON, EPIPE) \
X(WSAEFAULT, EFAULT) \
X(WSAEHOSTDOWN, EHOSTUNREACH) \
X(WSAEHOSTUNREACH, EHOSTUNREACH) \
X(WSAEINPROGRESS, EBUSY) \
X(WSAEINTR, EINTR) \
X(WSAEINVAL, EINVAL) \
X(WSAEISCONN, EISCONN) \
X(WSAEMSGSIZE, EMSGSIZE) \
X(WSAENETDOWN, ENETDOWN) \
X(WSAENETRESET, EHOSTUNREACH) \
X(WSAENETUNREACH, ENETUNREACH) \
X(WSAENOBUFS, ENOMEM) \
X(WSAENOTCONN, ENOTCONN) \
X(WSAENOTSOCK, ENOTSOCK) \
X(WSAEOPNOTSUPP, EOPNOTSUPP) \
X(WSAEPROCLIM, ENOMEM) \
X(WSAESHUTDOWN, EPIPE) \
X(WSAETIMEDOUT, ETIMEDOUT) \
X(WSAEWOULDBLOCK, EWOULDBLOCK) \
X(WSANOTINITIALISED, ENETDOWN) \
X(WSASYSNOTREADY, ENETDOWN) \
X(WSAVERNOTSUPPORTED, ENOSYS)
static errno_t err__map_win_error_to_errno(DWORD error) {
switch (error) {
#define X(error_sym, errno_sym) \
case error_sym: \
return errno_sym;
ERR__ERRNO_MAPPINGS(X)
#undef X
}
return EINVAL;
}
void err_map_win_error(void) {
errno = err__map_win_error_to_errno(GetLastError());
}
void err_set_win_error(DWORD error) {
SetLastError(error);
errno = err__map_win_error_to_errno(error);
}
int err_check_handle(HANDLE handle) {
DWORD flags;
/* GetHandleInformation() succeeds when passed INVALID_HANDLE_VALUE, so check
* for this condition explicitly. */
if (handle == INVALID_HANDLE_VALUE)
return_set_error(-1, ERROR_INVALID_HANDLE);
if (!GetHandleInformation(handle, &flags))
return_map_error(-1);
return 0;
}
#include <stddef.h>
#define array_count(a) (sizeof(a) / (sizeof((a)[0])))
#define container_of(ptr, type, member) \
((type*) ((uintptr_t) (ptr) - offsetof(type, member)))
#define unused_var(v) ((void) (v))
/* Polyfill `inline` for older versions of msvc (up to Visual Studio 2013) */
#if defined(_MSC_VER) && _MSC_VER < 1900
#define inline __inline
#endif
WEPOLL_INTERNAL int ws_global_init(void);
WEPOLL_INTERNAL SOCKET ws_get_base_socket(SOCKET socket);
static bool init__done = false;
static INIT_ONCE init__once = INIT_ONCE_STATIC_INIT;
static BOOL CALLBACK init__once_callback(INIT_ONCE* once,
void* parameter,
void** context) {
unused_var(once);
unused_var(parameter);
unused_var(context);
/* N.b. that initialization order matters here. */
if (ws_global_init() < 0 || nt_global_init() < 0 ||
reflock_global_init() < 0 || epoll_global_init() < 0)
return FALSE;
init__done = true;
return TRUE;
}
int init(void) {
if (!init__done &&
!InitOnceExecuteOnce(&init__once, init__once_callback, NULL, NULL))
/* `InitOnceExecuteOnce()` itself is infallible, and it doesn't set any
* error code when the once-callback returns FALSE. We return -1 here to
* indicate that global initialization failed; the failing init function is
* resposible for setting `errno` and calling `SetLastError()`. */
return -1;
return 0;
}
/* Set up a workaround for the following problem:
* FARPROC addr = GetProcAddress(...);
* MY_FUNC func = (MY_FUNC) addr; <-- GCC 8 warning/error.
* MY_FUNC func = (MY_FUNC) (void*) addr; <-- MSVC warning/error.
* To compile cleanly with either compiler, do casts with this "bridge" type:
* MY_FUNC func = (MY_FUNC) (nt__fn_ptr_cast_t) addr; */
#ifdef __GNUC__
typedef void* nt__fn_ptr_cast_t;
#else
typedef FARPROC nt__fn_ptr_cast_t;
#endif
#define X(return_type, attributes, name, parameters) \
WEPOLL_INTERNAL return_type(attributes* name) parameters = NULL;
NT_NTDLL_IMPORT_LIST(X)
#undef X
int nt_global_init(void) {
HMODULE ntdll;
FARPROC fn_ptr;
ntdll = GetModuleHandleW(L"ntdll.dll");
if (ntdll == NULL)
return -1;
#define X(return_type, attributes, name, parameters) \
fn_ptr = GetProcAddress(ntdll, #name); \
if (fn_ptr == NULL) \
return -1; \
name = (return_type(attributes*) parameters)(nt__fn_ptr_cast_t) fn_ptr;
NT_NTDLL_IMPORT_LIST(X)
#undef X
return 0;
}
#include <string.h>
typedef struct poll_group poll_group_t;
typedef struct queue_node queue_node_t;
WEPOLL_INTERNAL poll_group_t* poll_group_acquire(port_state_t* port);
WEPOLL_INTERNAL void poll_group_release(poll_group_t* poll_group);
WEPOLL_INTERNAL void poll_group_delete(poll_group_t* poll_group);
WEPOLL_INTERNAL poll_group_t* poll_group_from_queue_node(
queue_node_t* queue_node);
WEPOLL_INTERNAL HANDLE
poll_group_get_afd_device_handle(poll_group_t* poll_group);
typedef struct queue_node {
queue_node_t* prev;
queue_node_t* next;
} queue_node_t;
typedef struct queue {
queue_node_t head;
} queue_t;
WEPOLL_INTERNAL void queue_init(queue_t* queue);
WEPOLL_INTERNAL void queue_node_init(queue_node_t* node);
WEPOLL_INTERNAL queue_node_t* queue_first(const queue_t* queue);
WEPOLL_INTERNAL queue_node_t* queue_last(const queue_t* queue);
WEPOLL_INTERNAL void queue_prepend(queue_t* queue, queue_node_t* node);
WEPOLL_INTERNAL void queue_append(queue_t* queue, queue_node_t* node);
WEPOLL_INTERNAL void queue_move_to_start(queue_t* queue, queue_node_t* node);
WEPOLL_INTERNAL void queue_move_to_end(queue_t* queue, queue_node_t* node);
WEPOLL_INTERNAL void queue_remove(queue_node_t* node);
WEPOLL_INTERNAL bool queue_is_empty(const queue_t* queue);
WEPOLL_INTERNAL bool queue_is_enqueued(const queue_node_t* node);
#define POLL_GROUP__MAX_GROUP_SIZE 32
typedef struct poll_group {
port_state_t* port_state;
queue_node_t queue_node;
HANDLE afd_device_handle;
size_t group_size;
} poll_group_t;
static poll_group_t* poll_group__new(port_state_t* port_state) {
HANDLE iocp_handle = port_get_iocp_handle(port_state);
queue_t* poll_group_queue = port_get_poll_group_queue(port_state);
poll_group_t* poll_group = malloc(sizeof *poll_group);
if (poll_group == NULL)
return_set_error(NULL, ERROR_NOT_ENOUGH_MEMORY);
memset(poll_group, 0, sizeof *poll_group);
queue_node_init(&poll_group->queue_node);
poll_group->port_state = port_state;
if (afd_create_device_handle(iocp_handle, &poll_group->afd_device_handle) <
0) {
free(poll_group);
return NULL;
}
queue_append(poll_group_queue, &poll_group->queue_node);
return poll_group;
}
void poll_group_delete(poll_group_t* poll_group) {
assert(poll_group->group_size == 0);
CloseHandle(poll_group->afd_device_handle);
queue_remove(&poll_group->queue_node);
free(poll_group);
}
poll_group_t* poll_group_from_queue_node(queue_node_t* queue_node) {
return container_of(queue_node, poll_group_t, queue_node);
}
HANDLE poll_group_get_afd_device_handle(poll_group_t* poll_group) {
return poll_group->afd_device_handle;
}
poll_group_t* poll_group_acquire(port_state_t* port_state) {
queue_t* poll_group_queue = port_get_poll_group_queue(port_state);
poll_group_t* poll_group =
!queue_is_empty(poll_group_queue)
? container_of(
queue_last(poll_group_queue), poll_group_t, queue_node)
: NULL;
if (poll_group == NULL ||
poll_group->group_size >= POLL_GROUP__MAX_GROUP_SIZE)
poll_group = poll_group__new(port_state);
if (poll_group == NULL)
return NULL;
if (++poll_group->group_size == POLL_GROUP__MAX_GROUP_SIZE)
queue_move_to_start(poll_group_queue, &poll_group->queue_node);
return poll_group;
}
void poll_group_release(poll_group_t* poll_group) {
port_state_t* port_state = poll_group->port_state;
queue_t* poll_group_queue = port_get_poll_group_queue(port_state);
poll_group->group_size--;
assert(poll_group->group_size < POLL_GROUP__MAX_GROUP_SIZE);
queue_move_to_end(poll_group_queue, &poll_group->queue_node);
/* Poll groups are currently only freed when the epoll port is closed. */
}
WEPOLL_INTERNAL sock_state_t* sock_new(port_state_t* port_state,
SOCKET socket);
WEPOLL_INTERNAL void sock_delete(port_state_t* port_state,
sock_state_t* sock_state);
WEPOLL_INTERNAL void sock_force_delete(port_state_t* port_state,
sock_state_t* sock_state);
WEPOLL_INTERNAL int sock_set_event(port_state_t* port_state,
sock_state_t* sock_state,
const struct epoll_event* ev);
WEPOLL_INTERNAL int sock_update(port_state_t* port_state,
sock_state_t* sock_state);
WEPOLL_INTERNAL int sock_feed_event(port_state_t* port_state,
IO_STATUS_BLOCK* io_status_block,
struct epoll_event* ev);
WEPOLL_INTERNAL sock_state_t* sock_state_from_queue_node(
queue_node_t* queue_node);
WEPOLL_INTERNAL queue_node_t* sock_state_to_queue_node(
sock_state_t* sock_state);
WEPOLL_INTERNAL sock_state_t* sock_state_from_tree_node(
tree_node_t* tree_node);
WEPOLL_INTERNAL tree_node_t* sock_state_to_tree_node(sock_state_t* sock_state);
#define PORT__MAX_ON_STACK_COMPLETIONS 256
typedef struct port_state {
HANDLE iocp_handle;
tree_t sock_tree;
queue_t sock_update_queue;
queue_t sock_deleted_queue;
queue_t poll_group_queue;
ts_tree_node_t handle_tree_node;
CRITICAL_SECTION lock;
size_t active_poll_count;
} port_state_t;
static inline port_state_t* port__alloc(void) {
port_state_t* port_state = malloc(sizeof *port_state);
if (port_state == NULL)
return_set_error(NULL, ERROR_NOT_ENOUGH_MEMORY);
return port_state;
}
static inline void port__free(port_state_t* port) {
assert(port != NULL);
free(port);
}
static inline HANDLE port__create_iocp(void) {
HANDLE iocp_handle =
CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 0);
if (iocp_handle == NULL)
return_map_error(NULL);
return iocp_handle;
}
port_state_t* port_new(HANDLE* iocp_handle_out) {
port_state_t* port_state;
HANDLE iocp_handle;
port_state = port__alloc();
if (port_state == NULL)
goto err1;
iocp_handle = port__create_iocp();
if (iocp_handle == NULL)
goto err2;
memset(port_state, 0, sizeof *port_state);
port_state->iocp_handle = iocp_handle;
tree_init(&port_state->sock_tree);
queue_init(&port_state->sock_update_queue);
queue_init(&port_state->sock_deleted_queue);
queue_init(&port_state->poll_group_queue);
ts_tree_node_init(&port_state->handle_tree_node);
InitializeCriticalSection(&port_state->lock);
*iocp_handle_out = iocp_handle;
return port_state;
err2:
port__free(port_state);
err1:
return NULL;
}
static inline int port__close_iocp(port_state_t* port_state) {
HANDLE iocp_handle = port_state->iocp_handle;
port_state->iocp_handle = NULL;
if (!CloseHandle(iocp_handle))
return_map_error(-1);
return 0;
}
int port_close(port_state_t* port_state) {
int result;
EnterCriticalSection(&port_state->lock);
result = port__close_iocp(port_state);
LeaveCriticalSection(&port_state->lock);
return result;
}
int port_delete(port_state_t* port_state) {
tree_node_t* tree_node;
queue_node_t* queue_node;
/* At this point the IOCP port should have been closed. */
assert(port_state->iocp_handle == NULL);
while ((tree_node = tree_root(&port_state->sock_tree)) != NULL) {
sock_state_t* sock_state = sock_state_from_tree_node(tree_node);
sock_force_delete(port_state, sock_state);
}
while ((queue_node = queue_first(&port_state->sock_deleted_queue)) != NULL) {
sock_state_t* sock_state = sock_state_from_queue_node(queue_node);
sock_force_delete(port_state, sock_state);
}
while ((queue_node = queue_first(&port_state->poll_group_queue)) != NULL) {
poll_group_t* poll_group = poll_group_from_queue_node(queue_node);
poll_group_delete(poll_group);
}
assert(queue_is_empty(&port_state->sock_update_queue));
DeleteCriticalSection(&port_state->lock);
port__free(port_state);
return 0;
}
static int port__update_events(port_state_t* port_state) {
queue_t* sock_update_queue = &port_state->sock_update_queue;
/* Walk the queue, submitting new poll requests for every socket that needs
* it. */
while (!queue_is_empty(sock_update_queue)) {
queue_node_t* queue_node = queue_first(sock_update_queue);
sock_state_t* sock_state = sock_state_from_queue_node(queue_node);
if (sock_update(port_state, sock_state) < 0)
return -1;
/* sock_update() removes the socket from the update queue. */
}
return 0;
}
static inline void port__update_events_if_polling(port_state_t* port_state) {
if (port_state->active_poll_count > 0)
port__update_events(port_state);
}
static inline int port__feed_events(port_state_t* port_state,
struct epoll_event* epoll_events,
OVERLAPPED_ENTRY* iocp_events,
DWORD iocp_event_count) {
int epoll_event_count = 0;
DWORD i;
for (i = 0; i < iocp_event_count; i++) {
IO_STATUS_BLOCK* io_status_block =
(IO_STATUS_BLOCK*) iocp_events[i].lpOverlapped;
struct epoll_event* ev = &epoll_events[epoll_event_count];
epoll_event_count += sock_feed_event(port_state, io_status_block, ev);
}
return epoll_event_count;
}
static inline int port__poll(port_state_t* port_state,
struct epoll_event* epoll_events,
OVERLAPPED_ENTRY* iocp_events,
DWORD maxevents,
DWORD timeout) {
DWORD completion_count;
if (port__update_events(port_state) < 0)
return -1;
port_state->active_poll_count++;
LeaveCriticalSection(&port_state->lock);
BOOL r = GetQueuedCompletionStatusEx(port_state->iocp_handle,
iocp_events,
maxevents,
&completion_count,
timeout,
FALSE);
EnterCriticalSection(&port_state->lock);
port_state->active_poll_count--;
if (!r)
return_map_error(-1);
return port__feed_events(
port_state, epoll_events, iocp_events, completion_count);
}
int port_wait(port_state_t* port_state,
struct epoll_event* events,
int maxevents,
int timeout) {
OVERLAPPED_ENTRY stack_iocp_events[PORT__MAX_ON_STACK_COMPLETIONS];
OVERLAPPED_ENTRY* iocp_events;
uint64_t due = 0;
DWORD gqcs_timeout;
int result;
/* Check whether `maxevents` is in range. */
if (maxevents <= 0)
return_set_error(-1, ERROR_INVALID_PARAMETER);
/* Decide whether the IOCP completion list can live on the stack, or allocate
* memory for it on the heap. */
if ((size_t) maxevents <= array_count(stack_iocp_events)) {
iocp_events = stack_iocp_events;
} else if ((iocp_events =
malloc((size_t) maxevents * sizeof *iocp_events)) == NULL) {
iocp_events = stack_iocp_events;
maxevents = array_count(stack_iocp_events);
}
/* Compute the timeout for GetQueuedCompletionStatus, and the wait end
* time, if the user specified a timeout other than zero or infinite. */
if (timeout > 0) {
due = GetTickCount64() + (uint64_t) timeout;
gqcs_timeout = (DWORD) timeout;
} else if (timeout == 0) {
gqcs_timeout = 0;
} else {
gqcs_timeout = INFINITE;
}
EnterCriticalSection(&port_state->lock);
/* Dequeue completion packets until either at least one interesting event
* has been discovered, or the timeout is reached. */
for (;;) {
uint64_t now;
result = port__poll(
port_state, events, iocp_events, (DWORD) maxevents, gqcs_timeout);
if (result < 0 || result > 0)
break; /* Result, error, or time-out. */
if (timeout < 0)
continue; /* When timeout is negative, never time out. */
/* Update time. */
now = GetTickCount64();
/* Do not allow the due time to be in the past. */
if (now >= due) {
SetLastError(WAIT_TIMEOUT);
break;
}
/* Recompute time-out argument for GetQueuedCompletionStatus. */
gqcs_timeout = (DWORD)(due - now);
}
port__update_events_if_polling(port_state);
LeaveCriticalSection(&port_state->lock);
if (iocp_events != stack_iocp_events)
free(iocp_events);
if (result >= 0)
return result;
else if (GetLastError() == WAIT_TIMEOUT)
return 0;
else
return -1;
}
static inline int port__ctl_add(port_state_t* port_state,
SOCKET sock,
struct epoll_event* ev) {
sock_state_t* sock_state = sock_new(port_state, sock);
if (sock_state == NULL)
return -1;
if (sock_set_event(port_state, sock_state, ev) < 0) {
sock_delete(port_state, sock_state);
return -1;
}
port__update_events_if_polling(port_state);
return 0;
}
static inline int port__ctl_mod(port_state_t* port_state,
SOCKET sock,
struct epoll_event* ev) {
sock_state_t* sock_state = port_find_socket(port_state, sock);
if (sock_state == NULL)
return -1;
if (sock_set_event(port_state, sock_state, ev) < 0)
return -1;
port__update_events_if_polling(port_state);
return 0;
}
static inline int port__ctl_del(port_state_t* port_state, SOCKET sock) {
sock_state_t* sock_state = port_find_socket(port_state, sock);
if (sock_state == NULL)
return -1;
sock_delete(port_state, sock_state);
return 0;
}
static inline int port__ctl_op(port_state_t* port_state,
int op,
SOCKET sock,
struct epoll_event* ev) {
switch (op) {
case EPOLL_CTL_ADD:
return port__ctl_add(port_state, sock, ev);
case EPOLL_CTL_MOD:
return port__ctl_mod(port_state, sock, ev);
case EPOLL_CTL_DEL:
return port__ctl_del(port_state, sock);
default:
return_set_error(-1, ERROR_INVALID_PARAMETER);
}
}
int port_ctl(port_state_t* port_state,
int op,
SOCKET sock,
struct epoll_event* ev) {
int result;
EnterCriticalSection(&port_state->lock);
result = port__ctl_op(port_state, op, sock, ev);
LeaveCriticalSection(&port_state->lock);
return result;
}
int port_register_socket(port_state_t* port_state,
sock_state_t* sock_state,
SOCKET socket) {
if (tree_add(&port_state->sock_tree,
sock_state_to_tree_node(sock_state),
socket) < 0)
return_set_error(-1, ERROR_ALREADY_EXISTS);
return 0;
}
void port_unregister_socket(port_state_t* port_state,
sock_state_t* sock_state) {
tree_del(&port_state->sock_tree, sock_state_to_tree_node(sock_state));
}
sock_state_t* port_find_socket(port_state_t* port_state, SOCKET socket) {
tree_node_t* tree_node = tree_find(&port_state->sock_tree, socket);
if (tree_node == NULL)
return_set_error(NULL, ERROR_NOT_FOUND);
return sock_state_from_tree_node(tree_node);
}
void port_request_socket_update(port_state_t* port_state,
sock_state_t* sock_state) {
if (queue_is_enqueued(sock_state_to_queue_node(sock_state)))
return;
queue_append(&port_state->sock_update_queue,
sock_state_to_queue_node(sock_state));
}
void port_cancel_socket_update(port_state_t* port_state,
sock_state_t* sock_state) {
unused_var(port_state);
if (!queue_is_enqueued(sock_state_to_queue_node(sock_state)))
return;
queue_remove(sock_state_to_queue_node(sock_state));
}
void port_add_deleted_socket(port_state_t* port_state,
sock_state_t* sock_state) {
if (queue_is_enqueued(sock_state_to_queue_node(sock_state)))
return;
queue_append(&port_state->sock_deleted_queue,
sock_state_to_queue_node(sock_state));
}
void port_remove_deleted_socket(port_state_t* port_state,
sock_state_t* sock_state) {
unused_var(port_state);
if (!queue_is_enqueued(sock_state_to_queue_node(sock_state)))
return;
queue_remove(sock_state_to_queue_node(sock_state));
}
HANDLE port_get_iocp_handle(port_state_t* port_state) {
assert(port_state->iocp_handle != NULL);
return port_state->iocp_handle;
}
queue_t* port_get_poll_group_queue(port_state_t* port_state) {
return &port_state->poll_group_queue;
}
port_state_t* port_state_from_handle_tree_node(ts_tree_node_t* tree_node) {
return container_of(tree_node, port_state_t, handle_tree_node);
}
ts_tree_node_t* port_state_to_handle_tree_node(port_state_t* port_state) {
return &port_state->handle_tree_node;
}
void queue_init(queue_t* queue) {
queue_node_init(&queue->head);
}
void queue_node_init(queue_node_t* node) {
node->prev = node;
node->next = node;
}
static inline void queue__detach_node(queue_node_t* node) {
node->prev->next = node->next;
node->next->prev = node->prev;
}
queue_node_t* queue_first(const queue_t* queue) {
return !queue_is_empty(queue) ? queue->head.next : NULL;
}
queue_node_t* queue_last(const queue_t* queue) {
return !queue_is_empty(queue) ? queue->head.prev : NULL;
}
void queue_prepend(queue_t* queue, queue_node_t* node) {
node->next = queue->head.next;
node->prev = &queue->head;
node->next->prev = node;
queue->head.next = node;
}
void queue_append(queue_t* queue, queue_node_t* node) {
node->next = &queue->head;
node->prev = queue->head.prev;
node->prev->next = node;
queue->head.prev = node;
}
void queue_move_to_start(queue_t* queue, queue_node_t* node) {
queue__detach_node(node);
queue_prepend(queue, node);
}
void queue_move_to_end(queue_t* queue, queue_node_t* node) {
queue__detach_node(node);
queue_append(queue, node);
}
void queue_remove(queue_node_t* node) {
queue__detach_node(node);
queue_node_init(node);
}
bool queue_is_empty(const queue_t* queue) {
return !queue_is_enqueued(&queue->head);
}
bool queue_is_enqueued(const queue_node_t* node) {
return node->prev != node;
}
#define REFLOCK__REF ((long) 0x00000001UL)
#define REFLOCK__REF_MASK ((long) 0x0fffffffUL)
#define REFLOCK__DESTROY ((long) 0x10000000UL)
#define REFLOCK__DESTROY_MASK ((long) 0xf0000000UL)
#define REFLOCK__POISON ((long) 0x300dead0UL)
static HANDLE reflock__keyed_event = NULL;
int reflock_global_init(void) {
NTSTATUS status = NtCreateKeyedEvent(
&reflock__keyed_event, KEYEDEVENT_ALL_ACCESS, NULL, 0);
if (status != STATUS_SUCCESS)
return_set_error(-1, RtlNtStatusToDosError(status));
return 0;
}
void reflock_init(reflock_t* reflock) {
reflock->state = 0;
}
static void reflock__signal_event(void* address) {
NTSTATUS status =
NtReleaseKeyedEvent(reflock__keyed_event, address, FALSE, NULL);
if (status != STATUS_SUCCESS)
abort();
}
static void reflock__await_event(void* address) {
NTSTATUS status =
NtWaitForKeyedEvent(reflock__keyed_event, address, FALSE, NULL);
if (status != STATUS_SUCCESS)
abort();
}
void reflock_ref(reflock_t* reflock) {
long state = InterlockedAdd(&reflock->state, REFLOCK__REF);
/* Verify that the counter didn't overflow and the lock isn't destroyed. */
assert((state & REFLOCK__DESTROY_MASK) == 0);
unused_var(state);
}
void reflock_unref(reflock_t* reflock) {
long state = InterlockedAdd(&reflock->state, -REFLOCK__REF);
/* Verify that the lock was referenced and not already destroyed. */
assert((state & REFLOCK__DESTROY_MASK & ~REFLOCK__DESTROY) == 0);
if (state == REFLOCK__DESTROY)
reflock__signal_event(reflock);
}
void reflock_unref_and_destroy(reflock_t* reflock) {
long state =
InterlockedAdd(&reflock->state, REFLOCK__DESTROY - REFLOCK__REF);
long ref_count = state & REFLOCK__REF_MASK;
/* Verify that the lock was referenced and not already destroyed. */
assert((state & REFLOCK__DESTROY_MASK) == REFLOCK__DESTROY);
if (ref_count != 0)
reflock__await_event(reflock);
state = InterlockedExchange(&reflock->state, REFLOCK__POISON);
assert(state == REFLOCK__DESTROY);
}
#define SOCK__KNOWN_EPOLL_EVENTS \
(EPOLLIN | EPOLLPRI | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | \
EPOLLRDBAND | EPOLLWRNORM | EPOLLWRBAND | EPOLLMSG | EPOLLRDHUP)
typedef enum sock__poll_status {
SOCK__POLL_IDLE = 0,
SOCK__POLL_PENDING,
SOCK__POLL_CANCELLED
} sock__poll_status_t;
typedef struct sock_state {
IO_STATUS_BLOCK io_status_block;
AFD_POLL_INFO poll_info;
queue_node_t queue_node;
tree_node_t tree_node;
poll_group_t* poll_group;
SOCKET base_socket;
epoll_data_t user_data;
uint32_t user_events;
uint32_t pending_events;
sock__poll_status_t poll_status;
bool delete_pending;
} sock_state_t;
static inline sock_state_t* sock__alloc(void) {
sock_state_t* sock_state = malloc(sizeof *sock_state);
if (sock_state == NULL)
return_set_error(NULL, ERROR_NOT_ENOUGH_MEMORY);
return sock_state;
}
static inline void sock__free(sock_state_t* sock_state) {
assert(sock_state != NULL);
free(sock_state);
}
static inline int sock__cancel_poll(sock_state_t* sock_state) {
assert(sock_state->poll_status == SOCK__POLL_PENDING);
if (afd_cancel_poll(poll_group_get_afd_device_handle(sock_state->poll_group),
&sock_state->io_status_block) < 0)
return -1;
sock_state->poll_status = SOCK__POLL_CANCELLED;
sock_state->pending_events = 0;
return 0;
}
sock_state_t* sock_new(port_state_t* port_state, SOCKET socket) {
SOCKET base_socket;
poll_group_t* poll_group;
sock_state_t* sock_state;
if (socket == 0 || socket == INVALID_SOCKET)
return_set_error(NULL, ERROR_INVALID_HANDLE);
base_socket = ws_get_base_socket(socket);
if (base_socket == INVALID_SOCKET)
return NULL;
poll_group = poll_group_acquire(port_state);
if (poll_group == NULL)
return NULL;
sock_state = sock__alloc();
if (sock_state == NULL)
goto err1;
memset(sock_state, 0, sizeof *sock_state);
sock_state->base_socket = base_socket;
sock_state->poll_group = poll_group;
tree_node_init(&sock_state->tree_node);
queue_node_init(&sock_state->queue_node);
if (port_register_socket(port_state, sock_state, socket) < 0)
goto err2;
return sock_state;
err2:
sock__free(sock_state);
err1:
poll_group_release(poll_group);
return NULL;
}
static int sock__delete(port_state_t* port_state,
sock_state_t* sock_state,
bool force) {
if (!sock_state->delete_pending) {
if (sock_state->poll_status == SOCK__POLL_PENDING)
sock__cancel_poll(sock_state);
port_cancel_socket_update(port_state, sock_state);
port_unregister_socket(port_state, sock_state);
sock_state->delete_pending = true;
}
/* If the poll request still needs to complete, the sock_state object can't
* be free()d yet. `sock_feed_event()` or `port_close()` will take care
* of this later. */
if (force || sock_state->poll_status == SOCK__POLL_IDLE) {
/* Free the sock_state now. */
port_remove_deleted_socket(port_state, sock_state);
poll_group_release(sock_state->poll_group);
sock__free(sock_state);
} else {
/* Free the socket later. */
port_add_deleted_socket(port_state, sock_state);
}
return 0;
}
void sock_delete(port_state_t* port_state, sock_state_t* sock_state) {
sock__delete(port_state, sock_state, false);
}
void sock_force_delete(port_state_t* port_state, sock_state_t* sock_state) {
sock__delete(port_state, sock_state, true);
}
int sock_set_event(port_state_t* port_state,
sock_state_t* sock_state,
const struct epoll_event* ev) {
/* EPOLLERR and EPOLLHUP are always reported, even when not requested by the
* caller. However they are disabled after a event has been reported for a
* socket for which the EPOLLONESHOT flag was set. */
uint32_t events = ev->events | EPOLLERR | EPOLLHUP;
sock_state->user_events = events;
sock_state->user_data = ev->data;
if ((events & SOCK__KNOWN_EPOLL_EVENTS & ~sock_state->pending_events) != 0)
port_request_socket_update(port_state, sock_state);
return 0;
}
static inline DWORD sock__epoll_events_to_afd_events(uint32_t epoll_events) {
/* Always monitor for AFD_POLL_LOCAL_CLOSE, which is triggered when the
* socket is closed with closesocket() or CloseHandle(). */
DWORD afd_events = AFD_POLL_LOCAL_CLOSE;
if (epoll_events & (EPOLLIN | EPOLLRDNORM))
afd_events |= AFD_POLL_RECEIVE | AFD_POLL_ACCEPT;
if (epoll_events & (EPOLLPRI | EPOLLRDBAND))
afd_events |= AFD_POLL_RECEIVE_EXPEDITED;
if (epoll_events & (EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND))
afd_events |= AFD_POLL_SEND;
if (epoll_events & (EPOLLIN | EPOLLRDNORM | EPOLLRDHUP))
afd_events |= AFD_POLL_DISCONNECT;
if (epoll_events & EPOLLHUP)
afd_events |= AFD_POLL_ABORT;
if (epoll_events & EPOLLERR)
afd_events |= AFD_POLL_CONNECT_FAIL;
return afd_events;
}
static inline uint32_t sock__afd_events_to_epoll_events(DWORD afd_events) {
uint32_t epoll_events = 0;
if (afd_events & (AFD_POLL_RECEIVE | AFD_POLL_ACCEPT))
epoll_events |= EPOLLIN | EPOLLRDNORM;
if (afd_events & AFD_POLL_RECEIVE_EXPEDITED)
epoll_events |= EPOLLPRI | EPOLLRDBAND;
if (afd_events & AFD_POLL_SEND)
epoll_events |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
if (afd_events & AFD_POLL_DISCONNECT)
epoll_events |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
if (afd_events & AFD_POLL_ABORT)
epoll_events |= EPOLLHUP;
if (afd_events & AFD_POLL_CONNECT_FAIL)
/* Linux reports all these events after connect() has failed. */
epoll_events |=
EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLRDNORM | EPOLLWRNORM | EPOLLRDHUP;
return epoll_events;
}
int sock_update(port_state_t* port_state, sock_state_t* sock_state) {
assert(!sock_state->delete_pending);
if ((sock_state->poll_status == SOCK__POLL_PENDING) &&
(sock_state->user_events & SOCK__KNOWN_EPOLL_EVENTS &
~sock_state->pending_events) == 0) {
/* All the events the user is interested in are already being monitored by
* the pending poll operation. It might spuriously complete because of an
* event that we're no longer interested in; when that happens we'll submit
* a new poll operation with the updated event mask. */
} else if (sock_state->poll_status == SOCK__POLL_PENDING) {
/* A poll operation is already pending, but it's not monitoring for all the
* events that the user is interested in. Therefore, cancel the pending
* poll operation; when we receive it's completion package, a new poll
* operation will be submitted with the correct event mask. */
if (sock__cancel_poll(sock_state) < 0)
return -1;
} else if (sock_state->poll_status == SOCK__POLL_CANCELLED) {
/* The poll operation has already been cancelled, we're still waiting for
* it to return. For now, there's nothing that needs to be done. */
} else if (sock_state->poll_status == SOCK__POLL_IDLE) {
/* No poll operation is pending; start one. */
sock_state->poll_info.Exclusive = FALSE;
sock_state->poll_info.NumberOfHandles = 1;
sock_state->poll_info.Timeout.QuadPart = INT64_MAX;
sock_state->poll_info.Handles[0].Handle = (HANDLE) sock_state->base_socket;
sock_state->poll_info.Handles[0].Status = 0;
sock_state->poll_info.Handles[0].Events =
sock__epoll_events_to_afd_events(sock_state->user_events);
if (afd_poll(poll_group_get_afd_device_handle(sock_state->poll_group),
&sock_state->poll_info,
&sock_state->io_status_block) < 0) {
switch (GetLastError()) {
case ERROR_IO_PENDING:
/* Overlapped poll operation in progress; this is expected. */
break;
case ERROR_INVALID_HANDLE:
/* Socket closed; it'll be dropped from the epoll set. */
return sock__delete(port_state, sock_state, false);
default:
/* Other errors are propagated to the caller. */
return_map_error(-1);
}
}
/* The poll request was successfully submitted. */
sock_state->poll_status = SOCK__POLL_PENDING;
sock_state->pending_events = sock_state->user_events;
} else {
/* Unreachable. */
assert(false);
}
port_cancel_socket_update(port_state, sock_state);
return 0;
}
int sock_feed_event(port_state_t* port_state,
IO_STATUS_BLOCK* io_status_block,
struct epoll_event* ev) {
sock_state_t* sock_state =
container_of(io_status_block, sock_state_t, io_status_block);
AFD_POLL_INFO* poll_info = &sock_state->poll_info;
uint32_t epoll_events = 0;
sock_state->poll_status = SOCK__POLL_IDLE;
sock_state->pending_events = 0;
if (sock_state->delete_pending) {
/* Socket has been deleted earlier and can now be freed. */
return sock__delete(port_state, sock_state, false);
} else if (io_status_block->Status == STATUS_CANCELLED) {
/* The poll request was cancelled by CancelIoEx. */
} else if (!NT_SUCCESS(io_status_block->Status)) {
/* The overlapped request itself failed in an unexpected way. */
epoll_events = EPOLLERR;
} else if (poll_info->NumberOfHandles < 1) {
/* This poll operation succeeded but didn't report any socket events. */
} else if (poll_info->Handles[0].Events & AFD_POLL_LOCAL_CLOSE) {
/* The poll operation reported that the socket was closed. */
return sock__delete(port_state, sock_state, false);
} else {
/* Events related to our socket were reported. */
epoll_events =
sock__afd_events_to_epoll_events(poll_info->Handles[0].Events);
}
/* Requeue the socket so a new poll request will be submitted. */
port_request_socket_update(port_state, sock_state);
/* Filter out events that the user didn't ask for. */
epoll_events &= sock_state->user_events;
/* Return if there are no epoll events to report. */
if (epoll_events == 0)
return 0;
/* If the the socket has the EPOLLONESHOT flag set, unmonitor all events,
* even EPOLLERR and EPOLLHUP. But always keep looking for closed sockets. */
if (sock_state->user_events & EPOLLONESHOT)
sock_state->user_events = 0;
ev->data = sock_state->user_data;
ev->events = epoll_events;
return 1;
}
sock_state_t* sock_state_from_queue_node(queue_node_t* queue_node) {
return container_of(queue_node, sock_state_t, queue_node);
}
queue_node_t* sock_state_to_queue_node(sock_state_t* sock_state) {
return &sock_state->queue_node;
}
sock_state_t* sock_state_from_tree_node(tree_node_t* tree_node) {
return container_of(tree_node, sock_state_t, tree_node);
}
tree_node_t* sock_state_to_tree_node(sock_state_t* sock_state) {
return &sock_state->tree_node;
}
void ts_tree_init(ts_tree_t* ts_tree) {
tree_init(&ts_tree->tree);
InitializeSRWLock(&ts_tree->lock);
}
void ts_tree_node_init(ts_tree_node_t* node) {
tree_node_init(&node->tree_node);
reflock_init(&node->reflock);
}
int ts_tree_add(ts_tree_t* ts_tree, ts_tree_node_t* node, uintptr_t key) {
int r;
AcquireSRWLockExclusive(&ts_tree->lock);
r = tree_add(&ts_tree->tree, &node->tree_node, key);
ReleaseSRWLockExclusive(&ts_tree->lock);
return r;
}
static inline ts_tree_node_t* ts_tree__find_node(ts_tree_t* ts_tree,
uintptr_t key) {
tree_node_t* tree_node = tree_find(&ts_tree->tree, key);
if (tree_node == NULL)
return NULL;
return container_of(tree_node, ts_tree_node_t, tree_node);
}
ts_tree_node_t* ts_tree_del_and_ref(ts_tree_t* ts_tree, uintptr_t key) {
ts_tree_node_t* ts_tree_node;
AcquireSRWLockExclusive(&ts_tree->lock);
ts_tree_node = ts_tree__find_node(ts_tree, key);
if (ts_tree_node != NULL) {
tree_del(&ts_tree->tree, &ts_tree_node->tree_node);
reflock_ref(&ts_tree_node->reflock);
}
ReleaseSRWLockExclusive(&ts_tree->lock);
return ts_tree_node;
}
ts_tree_node_t* ts_tree_find_and_ref(ts_tree_t* ts_tree, uintptr_t key) {
ts_tree_node_t* ts_tree_node;
AcquireSRWLockShared(&ts_tree->lock);
ts_tree_node = ts_tree__find_node(ts_tree, key);
if (ts_tree_node != NULL)
reflock_ref(&ts_tree_node->reflock);
ReleaseSRWLockShared(&ts_tree->lock);
return ts_tree_node;
}
void ts_tree_node_unref(ts_tree_node_t* node) {
reflock_unref(&node->reflock);
}
void ts_tree_node_unref_and_destroy(ts_tree_node_t* node) {
reflock_unref_and_destroy(&node->reflock);
}
void tree_init(tree_t* tree) {
memset(tree, 0, sizeof *tree);
}
void tree_node_init(tree_node_t* node) {
memset(node, 0, sizeof *node);
}
#define TREE__ROTATE(cis, trans) \
tree_node_t* p = node; \
tree_node_t* q = node->trans; \
tree_node_t* parent = p->parent; \
\
if (parent) { \
if (parent->left == p) \
parent->left = q; \
else \
parent->right = q; \
} else { \
tree->root = q; \
} \
\
q->parent = parent; \
p->parent = q; \
p->trans = q->cis; \
if (p->trans) \
p->trans->parent = p; \
q->cis = p;
static inline void tree__rotate_left(tree_t* tree, tree_node_t* node) {
TREE__ROTATE(left, right)
}
static inline void tree__rotate_right(tree_t* tree, tree_node_t* node) {
TREE__ROTATE(right, left)
}
#define TREE__INSERT_OR_DESCEND(side) \
if (parent->side) { \
parent = parent->side; \
} else { \
parent->side = node; \
break; \
}
#define TREE__REBALANCE_AFTER_INSERT(cis, trans) \
tree_node_t* grandparent = parent->parent; \
tree_node_t* uncle = grandparent->trans; \
\
if (uncle && uncle->red) { \
parent->red = uncle->red = false; \
grandparent->red = true; \
node = grandparent; \
} else { \
if (node == parent->trans) { \
tree__rotate_##cis(tree, parent); \
node = parent; \
parent = node->parent; \
} \
parent->red = false; \
grandparent->red = true; \
tree__rotate_##trans(tree, grandparent); \
}
int tree_add(tree_t* tree, tree_node_t* node, uintptr_t key) {
tree_node_t* parent;
parent = tree->root;
if (parent) {
for (;;) {
if (key < parent->key) {
TREE__INSERT_OR_DESCEND(left)
} else if (key > parent->key) {
TREE__INSERT_OR_DESCEND(right)
} else {
return -1;
}
}
} else {
tree->root = node;
}
node->key = key;
node->left = node->right = NULL;
node->parent = parent;
node->red = true;
for (; parent && parent->red; parent = node->parent) {
if (parent == parent->parent->left) {
TREE__REBALANCE_AFTER_INSERT(left, right)
} else {
TREE__REBALANCE_AFTER_INSERT(right, left)
}
}
tree->root->red = false;
return 0;
}
#define TREE__REBALANCE_AFTER_REMOVE(cis, trans) \
tree_node_t* sibling = parent->trans; \
\
if (sibling->red) { \
sibling->red = false; \
parent->red = true; \
tree__rotate_##cis(tree, parent); \
sibling = parent->trans; \
} \
if ((sibling->left && sibling->left->red) || \
(sibling->right && sibling->right->red)) { \
if (!sibling->trans || !sibling->trans->red) { \
sibling->cis->red = false; \
sibling->red = true; \
tree__rotate_##trans(tree, sibling); \
sibling = parent->trans; \
} \
sibling->red = parent->red; \
parent->red = sibling->trans->red = false; \
tree__rotate_##cis(tree, parent); \
node = tree->root; \
break; \
} \
sibling->red = true;
void tree_del(tree_t* tree, tree_node_t* node) {
tree_node_t* parent = node->parent;
tree_node_t* left = node->left;
tree_node_t* right = node->right;
tree_node_t* next;
bool red;
if (!left) {
next = right;
} else if (!right) {
next = left;
} else {
next = right;
while (next->left)
next = next->left;
}
if (parent) {
if (parent->left == node)
parent->left = next;
else
parent->right = next;
} else {
tree->root = next;
}
if (left && right) {
red = next->red;
next->red = node->red;
next->left = left;
left->parent = next;
if (next != right) {
parent = next->parent;
next->parent = node->parent;
node = next->right;
parent->left = node;
next->right = right;
right->parent = next;
} else {
next->parent = parent;
parent = next;
node = next->right;
}
} else {
red = node->red;
node = next;
}
if (node)
node->parent = parent;
if (red)
return;
if (node && node->red) {
node->red = false;
return;
}
do {
if (node == tree->root)
break;
if (node == parent->left) {
TREE__REBALANCE_AFTER_REMOVE(left, right)
} else {
TREE__REBALANCE_AFTER_REMOVE(right, left)
}
node = parent;
parent = parent->parent;
} while (!node->red);
if (node)
node->red = false;
}
tree_node_t* tree_find(const tree_t* tree, uintptr_t key) {
tree_node_t* node = tree->root;
while (node) {
if (key < node->key)
node = node->left;
else if (key > node->key)
node = node->right;
else
return node;
}
return NULL;
}
tree_node_t* tree_root(const tree_t* tree) {
return tree->root;
}
#ifndef SIO_BSP_HANDLE_POLL
#define SIO_BSP_HANDLE_POLL 0x4800001D
#endif
#ifndef SIO_BASE_HANDLE
#define SIO_BASE_HANDLE 0x48000022
#endif
int ws_global_init(void) {
int r;
WSADATA wsa_data;
r = WSAStartup(MAKEWORD(2, 2), &wsa_data);
if (r != 0)
return_set_error(-1, (DWORD) r);
return 0;
}
static inline SOCKET ws__ioctl_get_bsp_socket(SOCKET socket, DWORD ioctl) {
SOCKET bsp_socket;
DWORD bytes;
if (WSAIoctl(socket,
ioctl,
NULL,
0,
&bsp_socket,
sizeof bsp_socket,
&bytes,
NULL,
NULL) != SOCKET_ERROR)
return bsp_socket;
else
return INVALID_SOCKET;
}
SOCKET ws_get_base_socket(SOCKET socket) {
SOCKET base_socket;
DWORD error;
for (;;) {
base_socket = ws__ioctl_get_bsp_socket(socket, SIO_BASE_HANDLE);
if (base_socket != INVALID_SOCKET)
return base_socket;
error = GetLastError();
if (error == WSAENOTSOCK)
return_set_error(INVALID_SOCKET, error);
/* Even though Microsoft documentation clearly states that LSPs should
* never intercept the `SIO_BASE_HANDLE` ioctl [1], Komodia based LSPs do
* so anyway, breaking it, with the apparent intention of preventing LSP
* bypass [2]. Fortunately they don't handle `SIO_BSP_HANDLE_POLL`, which
* will at least let us obtain the socket associated with the next winsock
* protocol chain entry. If this succeeds, loop around and call
* `SIO_BASE_HANDLE` again with the returned BSP socket, to make sure that
* we unwrap all layers and retrieve the actual base socket.
* [1] https://docs.microsoft.com/en-us/windows/win32/winsock/winsock-ioctls
* [2] https://www.komodia.com/newwiki/index.php?title=Komodia%27s_Redirector_bug_fixes#Version_2.2.2.6
*/
base_socket = ws__ioctl_get_bsp_socket(socket, SIO_BSP_HANDLE_POLL);
if (base_socket != INVALID_SOCKET && base_socket != socket)
socket = base_socket;
else
return_set_error(INVALID_SOCKET, error);
}
}