#include "kutilities.h"

#include <iomanip>
#include <string>
#include <memory>
#include <sstream>
#include <chrono>

#define CHUNK 16384

/* Compress from file source to file dest until EOF on source.
def() returns Z_OK on success, Z_MEM_ERROR if memory could not be
allocated for processing, Z_STREAM_ERROR if an invalid compression
level is supplied, Z_VERSION_ERROR if the version of zlib.h and the
version of the library linked do not match, or Z_ERRNO if there is
an error reading or writing the files. */
int CompressString(const char* in_str, size_t in_len, std::string& out_str, int level)
{
    if( !in_str )
        return Z_DATA_ERROR;

    int ret, flush;
    unsigned have;
    z_stream strm;

    unsigned char out[CHUNK];

    /* allocate deflate state */
    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;
    strm.opaque = Z_NULL;
    ret = deflateInit(&strm, level);
    if( ret != Z_OK )
        return ret;

    std::shared_ptr<z_stream> sp_strm(&strm, [](z_stream* strm)
        {
            (void)deflateEnd(strm);
        });

    const char* end = in_str + in_len;

    //size_t pos_index = 0;
    size_t distance = 0;
    /* compress until end of file */
    do
    {
        distance = end - in_str;
        strm.avail_in = (distance >= CHUNK) ? CHUNK : distance;
        strm.next_in = (Bytef*)in_str;

        // next pos
        in_str += strm.avail_in;
        flush = (in_str == end) ? Z_FINISH : Z_NO_FLUSH;

        /* run deflate() on input until output buffer not full, finish
        compression if all of source has been read in */
        do
        {
            strm.avail_out = CHUNK;
            strm.next_out = out;
            ret = deflate(&strm, flush);  /* no bad return value */
            if( ret == Z_STREAM_ERROR )
                break;
            have = CHUNK - strm.avail_out;
            out_str.append((const char*)out, have);
        }
        while( strm.avail_out == 0 );

        if( strm.avail_in != 0 );   /* all input will be used */
        break;

        /* done when last data in file processed */
    }
    while( flush != Z_FINISH );

    if( ret != Z_STREAM_END ) /* stream will be complete */
        return Z_STREAM_ERROR;

    /* clean up and return */
    return Z_OK;
}

/* Decompress from file source to file dest until stream ends or EOF.
inf() returns Z_OK on success, Z_MEM_ERROR if memory could not be
allocated for processing, Z_DATA_ERROR if the deflate data is
invalid or incomplete, Z_VERSION_ERROR if the version of zlib.h and
the version of the library linked do not match, or Z_ERRNO if there
is an error reading or writing the files. */
int DecompressString(const char* in_str, size_t in_len, std::string& out_str)
{
    if( !in_str )
        return Z_DATA_ERROR;

    int ret;
    unsigned have;
    z_stream strm;
    unsigned char out[CHUNK];

    /* allocate inflate state */
    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;
    strm.opaque = Z_NULL;
    strm.avail_in = 0;
    strm.next_in = Z_NULL;
    ret = inflateInit(&strm);
    if( ret != Z_OK )
        return ret;

    std::shared_ptr<z_stream> sp_strm(&strm, [](z_stream* strm)
        {
            (void)inflateEnd(strm);
        });

    const char* end = in_str + in_len;

    //size_t pos_index = 0;
    size_t distance = 0;

    int flush = 0;
    /* decompress until deflate stream ends or end of file */
    do
    {
        distance = end - in_str;
        strm.avail_in = (distance >= CHUNK) ? CHUNK : distance;
        strm.next_in = (Bytef*)in_str;

        // next pos
        in_str += strm.avail_in;
        flush = (in_str == end) ? Z_FINISH : Z_NO_FLUSH;

        /* run inflate() on input until output buffer not full */
        do
        {
            strm.avail_out = CHUNK;
            strm.next_out = out;
            ret = inflate(&strm, Z_NO_FLUSH);

            if( ret == Z_STREAM_ERROR ) /* state not clobbered */
                break;

            switch( ret )
            {
            case Z_NEED_DICT:
                ret = Z_DATA_ERROR;   /* and fall through */
            case Z_DATA_ERROR:
            case Z_MEM_ERROR:
                return ret;
            }
            have = CHUNK - strm.avail_out;
            out_str.append((const char*)out, have);
        }
        while( strm.avail_out == 0 );

        /* done when inflate() says it's done */
    }
    while( flush != Z_FINISH );

    /* clean up and return */
    return ret == Z_STREAM_END ? Z_OK : Z_DATA_ERROR;
}

// �������ڽ��ڴ��ת��Ϊʮ�������ַ���
std::string printHex(const void* data, size_t size)
{
    std::ostringstream oss;
    std::ostringstream oss2;
    std::ostringstream ossrow;

    const size_t lineSize = 16; // ÿ��������ֽ���
    const unsigned char* p = static_cast<const unsigned char*>(data);

    int ic = 0;
    int row = 0;

    ossrow << std::setw(8) << std::setfill('0') << std::hex << row++ << "h : ";
    oss << ossrow.str().c_str();

    for( size_t i = 0; i < size; ++i )
    {
        ic++;

        // ÿ���ֽ�֮���ÿո�ָ�
        oss << std::setw(2) << std::setfill('0') << std::hex << std::uppercase << static_cast<int>(p[i]);

        char ch = (isprint(p[i]) != 0) ? p[i] : '.';

        oss2 << ch;

        // ÿlineSize���ֽڻ���
        if( (i + 1) % lineSize == 0 )
        {
            ossrow.clear();
            ossrow.str("");

            oss << "    [" << oss2.str().c_str() << "]" << std::endl;
            oss2.clear();
            oss2.str("");

            ossrow << std::setw(8) << std::setfill('0') << std::hex << row++ << "h : ";
            oss << ossrow.str().c_str();

            ic = 0;
        }
        else if( i == size - 1 )
        {
            if( (i + 1) % lineSize != 0 )
            {
                if( i % 2 != 0 )
                {
                    for( size_t j = 0; j < (lineSize - ic); j++ )
                    {
                        oss << " --";
                    }
                }
                else
                {
                    for( size_t j = 0; j < (lineSize - ic); j++ )
                    {
                        oss << " --";
                    }
                }
            }
            oss << "    [" << oss2.str().c_str();

            if( (i + 1) % lineSize != 0 )
            {
                for( size_t j = 0; j < (lineSize - ic); j++ )
                {
                    oss << " ";
                }
            }

            oss << "]" << std::endl;
            oss2.clear();
            oss2.str("");

            ic = 0;
        }
#if 0
        else if( (i + 1) % 8 == 0 )
        {
            oss << "    ";
            oss2 << "  ";
        }
#endif
        else
        {
            oss << " ";
        }
    }
    return oss.str();
}


std::string get_current_timestamp()
{
    auto now = std::chrono::system_clock::now();
    //ͨ����ͬ���Ȼ�ȡ���ĺ�����
    uint64_t dis_millseconds = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()).count()
        - std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count() * 1000;
    time_t tt = std::chrono::system_clock::to_time_t(now);
    auto time_tm = localtime(&tt);
    char strTime[25] = { 0 };
    sprintf(strTime, "%d-%02d-%02d %02d:%02d:%02d.%03d", time_tm->tm_year + 1900,
        time_tm->tm_mon + 1, time_tm->tm_mday, time_tm->tm_hour,
        time_tm->tm_min, time_tm->tm_sec, (int)dis_millseconds);
    return std::string(strTime);
}