emsApplication/3rdPartner/libhv/cpputil/hthreadpool.h

250 lines
6.7 KiB
C
Raw Normal View History

2024-05-24 12:19:45 +08:00
#ifndef HV_THREAD_POOL_H_
#define HV_THREAD_POOL_H_
/*
* @usage unittest/threadpool_test.cpp
*/
#include <time.h>
#include <thread>
#include <list>
#include <queue>
#include <functional>
#include <atomic>
#include <mutex>
#include <condition_variable>
#include <future>
#include <memory>
#include <utility>
#include <chrono>
#define DEFAULT_THREAD_POOL_MIN_THREAD_NUM 1
#define DEFAULT_THREAD_POOL_MAX_THREAD_NUM std::thread::hardware_concurrency()
#define DEFAULT_THREAD_POOL_MAX_IDLE_TIME 60000 // ms
class HThreadPool {
public:
using Task = std::function<void()>;
HThreadPool(int min_threads = DEFAULT_THREAD_POOL_MIN_THREAD_NUM,
int max_threads = DEFAULT_THREAD_POOL_MAX_THREAD_NUM,
int max_idle_ms = DEFAULT_THREAD_POOL_MAX_IDLE_TIME)
: min_thread_num(min_threads)
, max_thread_num(max_threads)
, max_idle_time(max_idle_ms)
, status(STOP)
, cur_thread_num(0)
, idle_thread_num(0)
{}
virtual ~HThreadPool() {
stop();
}
void setMinThreadNum(int min_threads) {
min_thread_num = min_threads;
}
void setMaxThreadNum(int max_threads) {
max_thread_num = max_threads;
}
void setMaxIdleTime(int ms) {
max_idle_time = ms;
}
int currentThreadNum() {
return cur_thread_num;
}
int idleThreadNum() {
return idle_thread_num;
}
size_t taskNum() {
std::lock_guard<std::mutex> locker(task_mutex);
return tasks.size();
}
bool isStarted() {
return status != STOP;
}
bool isStopped() {
return status == STOP;
}
int start(int start_threads = 0) {
if (status != STOP) return -1;
status = RUNNING;
if (start_threads < min_thread_num) start_threads = min_thread_num;
if (start_threads > max_thread_num) start_threads = max_thread_num;
for (int i = 0; i < start_threads; ++i) {
createThread();
}
return 0;
}
int stop() {
if (status == STOP) return -1;
status = STOP;
task_cond.notify_all();
for (auto& i : threads) {
if (i.thread->joinable()) {
i.thread->join();
}
}
threads.clear();
cur_thread_num = 0;
idle_thread_num = 0;
return 0;
}
int pause() {
if (status == RUNNING) {
status = PAUSE;
}
return 0;
}
int resume() {
if (status == PAUSE) {
status = RUNNING;
}
return 0;
}
int wait() {
while (status != STOP) {
if (tasks.empty() && idle_thread_num == cur_thread_num) {
break;
}
std::this_thread::yield();
}
return 0;
}
/*
* return a future, calling future.get() will wait task done and return RetType.
* commit(fn, args...)
* commit(std::bind(&Class::mem_fn, &obj))
* commit(std::mem_fn(&Class::mem_fn, &obj))
*
*/
template<class Fn, class... Args>
auto commit(Fn&& fn, Args&&... args) -> std::future<decltype(fn(args...))> {
if (status == STOP) start();
if (idle_thread_num <= tasks.size() && cur_thread_num < max_thread_num) {
createThread();
}
using RetType = decltype(fn(args...));
auto task = std::make_shared<std::packaged_task<RetType()> >(
std::bind(std::forward<Fn>(fn), std::forward<Args>(args)...));
std::future<RetType> future = task->get_future();
{
std::lock_guard<std::mutex> locker(task_mutex);
tasks.emplace([task]{
(*task)();
});
}
task_cond.notify_one();
return future;
}
protected:
bool createThread() {
if (cur_thread_num >= max_thread_num) return false;
std::thread* thread = new std::thread([this] {
while (status != STOP) {
while (status == PAUSE) {
std::this_thread::yield();
}
Task task;
{
std::unique_lock<std::mutex> locker(task_mutex);
task_cond.wait_for(locker, std::chrono::milliseconds(max_idle_time), [this]() {
return status == STOP || !tasks.empty();
});
if (status == STOP) return;
if (tasks.empty()) {
if (cur_thread_num > min_thread_num) {
delThread(std::this_thread::get_id());
return;
}
continue;
}
--idle_thread_num;
task = std::move(tasks.front());
tasks.pop();
}
if (task) {
task();
++idle_thread_num;
}
}
});
addThread(thread);
return true;
}
void addThread(std::thread* thread) {
thread_mutex.lock();
++cur_thread_num;
++idle_thread_num;
ThreadData data;
data.thread = std::shared_ptr<std::thread>(thread);
data.id = thread->get_id();
data.status = RUNNING;
data.start_time = time(NULL);
data.stop_time = 0;
threads.emplace_back(data);
thread_mutex.unlock();
}
void delThread(std::thread::id id) {
time_t now = time(NULL);
thread_mutex.lock();
--cur_thread_num;
--idle_thread_num;
auto iter = threads.begin();
while (iter != threads.end()) {
if (iter->status == STOP && now > iter->stop_time) {
if (iter->thread->joinable()) {
iter->thread->join();
iter = threads.erase(iter);
continue;
}
} else if (iter->id == id) {
iter->status = STOP;
iter->stop_time = time(NULL);
}
++iter;
}
thread_mutex.unlock();
}
public:
int min_thread_num;
int max_thread_num;
int max_idle_time;
protected:
enum Status {
STOP,
RUNNING,
PAUSE,
};
struct ThreadData {
std::shared_ptr<std::thread> thread;
std::thread::id id;
Status status;
time_t start_time;
time_t stop_time;
};
std::atomic<Status> status;
std::atomic<int> cur_thread_num;
std::atomic<int> idle_thread_num;
std::list<ThreadData> threads;
std::mutex thread_mutex;
std::queue<Task> tasks;
std::mutex task_mutex;
std::condition_variable task_cond;
};
#endif // HV_THREAD_POOL_H_