961 lines
23 KiB
JavaScript
961 lines
23 KiB
JavaScript
|
import {
|
||
|
CubeUVReflectionMapping,
|
||
|
GammaEncoding,
|
||
|
LinearEncoding,
|
||
|
NoToneMapping,
|
||
|
NearestFilter,
|
||
|
NoBlending,
|
||
|
RGBDEncoding,
|
||
|
RGBEEncoding,
|
||
|
RGBEFormat,
|
||
|
RGBM16Encoding,
|
||
|
RGBM7Encoding,
|
||
|
UnsignedByteType,
|
||
|
sRGBEncoding
|
||
|
} from "../constants.js";
|
||
|
|
||
|
import { BufferAttribute } from "../core/BufferAttribute.js";
|
||
|
import { BufferGeometry } from "../core/BufferGeometry.js";
|
||
|
import { Mesh } from "../objects/Mesh.js";
|
||
|
import { OrthographicCamera } from "../cameras/OrthographicCamera.js";
|
||
|
import { PerspectiveCamera } from "../cameras/PerspectiveCamera.js";
|
||
|
import { RawShaderMaterial } from "../materials/RawShaderMaterial.js";
|
||
|
import { Vector2 } from "../math/Vector2.js";
|
||
|
import { Vector3 } from "../math/Vector3.js";
|
||
|
import { WebGLRenderTarget } from "../renderers/WebGLRenderTarget.js";
|
||
|
|
||
|
const LOD_MIN = 4;
|
||
|
const LOD_MAX = 8;
|
||
|
const SIZE_MAX = Math.pow( 2, LOD_MAX );
|
||
|
|
||
|
// The standard deviations (radians) associated with the extra mips. These are
|
||
|
// chosen to approximate a Trowbridge-Reitz distribution function times the
|
||
|
// geometric shadowing function. These sigma values squared must match the
|
||
|
// variance #defines in cube_uv_reflection_fragment.glsl.js.
|
||
|
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
|
||
|
|
||
|
const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
|
||
|
|
||
|
// The maximum length of the blur for loop. Smaller sigmas will use fewer
|
||
|
// samples and exit early, but not recompile the shader.
|
||
|
const MAX_SAMPLES = 20;
|
||
|
|
||
|
const ENCODINGS = {
|
||
|
[ LinearEncoding ]: 0,
|
||
|
[ sRGBEncoding ]: 1,
|
||
|
[ RGBEEncoding ]: 2,
|
||
|
[ RGBM7Encoding ]: 3,
|
||
|
[ RGBM16Encoding ]: 4,
|
||
|
[ RGBDEncoding ]: 5,
|
||
|
[ GammaEncoding ]: 6
|
||
|
};
|
||
|
|
||
|
const _flatCamera = new OrthographicCamera();
|
||
|
const { _lodPlanes, _sizeLods, _sigmas } = _createPlanes();
|
||
|
let _oldTarget = null;
|
||
|
|
||
|
// Golden Ratio
|
||
|
const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
|
||
|
const INV_PHI = 1 / PHI;
|
||
|
|
||
|
// Vertices of a dodecahedron (except the opposites, which represent the
|
||
|
// same axis), used as axis directions evenly spread on a sphere.
|
||
|
const _axisDirections = [
|
||
|
new Vector3( 1, 1, 1 ),
|
||
|
new Vector3( - 1, 1, 1 ),
|
||
|
new Vector3( 1, 1, - 1 ),
|
||
|
new Vector3( - 1, 1, - 1 ),
|
||
|
new Vector3( 0, PHI, INV_PHI ),
|
||
|
new Vector3( 0, PHI, - INV_PHI ),
|
||
|
new Vector3( INV_PHI, 0, PHI ),
|
||
|
new Vector3( - INV_PHI, 0, PHI ),
|
||
|
new Vector3( PHI, INV_PHI, 0 ),
|
||
|
new Vector3( - PHI, INV_PHI, 0 ) ];
|
||
|
|
||
|
/**
|
||
|
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
|
||
|
* (PMREM) from a cubeMap environment texture. This allows different levels of
|
||
|
* blur to be quickly accessed based on material roughness. It is packed into a
|
||
|
* special CubeUV format that allows us to perform custom interpolation so that
|
||
|
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
|
||
|
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
|
||
|
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
|
||
|
* higher roughness levels. In this way we maintain resolution to smoothly
|
||
|
* interpolate diffuse lighting while limiting sampling computation.
|
||
|
*/
|
||
|
|
||
|
function PMREMGenerator( renderer ) {
|
||
|
|
||
|
this._renderer = renderer;
|
||
|
this._pingPongRenderTarget = null;
|
||
|
|
||
|
this._blurMaterial = _getBlurShader( MAX_SAMPLES );
|
||
|
this._equirectShader = null;
|
||
|
this._cubemapShader = null;
|
||
|
|
||
|
this._compileMaterial( this._blurMaterial );
|
||
|
|
||
|
}
|
||
|
|
||
|
PMREMGenerator.prototype = {
|
||
|
|
||
|
constructor: PMREMGenerator,
|
||
|
|
||
|
/**
|
||
|
* Generates a PMREM from a supplied Scene, which can be faster than using an
|
||
|
* image if networking bandwidth is low. Optional sigma specifies a blur radius
|
||
|
* in radians to be applied to the scene before PMREM generation. Optional near
|
||
|
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
|
||
|
* is placed at the origin).
|
||
|
*/
|
||
|
fromScene: function ( scene, sigma = 0, near = 0.1, far = 100 ) {
|
||
|
|
||
|
_oldTarget = this._renderer.getRenderTarget();
|
||
|
const cubeUVRenderTarget = this._allocateTargets();
|
||
|
|
||
|
this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
|
||
|
if ( sigma > 0 ) {
|
||
|
|
||
|
this._blur( cubeUVRenderTarget, 0, 0, sigma );
|
||
|
|
||
|
}
|
||
|
|
||
|
this._applyPMREM( cubeUVRenderTarget );
|
||
|
this._cleanup( cubeUVRenderTarget );
|
||
|
|
||
|
return cubeUVRenderTarget;
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Generates a PMREM from an equirectangular texture, which can be either LDR
|
||
|
* (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
|
||
|
* as this matches best with the 256 x 256 cubemap output.
|
||
|
*/
|
||
|
fromEquirectangular: function ( equirectangular ) {
|
||
|
|
||
|
return this._fromTexture( equirectangular );
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Generates a PMREM from an cubemap texture, which can be either LDR
|
||
|
* (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
|
||
|
* as this matches best with the 256 x 256 cubemap output.
|
||
|
*/
|
||
|
fromCubemap: function ( cubemap ) {
|
||
|
|
||
|
return this._fromTexture( cubemap );
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
|
||
|
* your texture's network fetch for increased concurrency.
|
||
|
*/
|
||
|
compileCubemapShader: function () {
|
||
|
|
||
|
if ( this._cubemapShader === null ) {
|
||
|
|
||
|
this._cubemapShader = _getCubemapShader();
|
||
|
this._compileMaterial( this._cubemapShader );
|
||
|
|
||
|
}
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
|
||
|
* your texture's network fetch for increased concurrency.
|
||
|
*/
|
||
|
compileEquirectangularShader: function () {
|
||
|
|
||
|
if ( this._equirectShader === null ) {
|
||
|
|
||
|
this._equirectShader = _getEquirectShader();
|
||
|
this._compileMaterial( this._equirectShader );
|
||
|
|
||
|
}
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
|
||
|
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
|
||
|
* one of them will cause any others to also become unusable.
|
||
|
*/
|
||
|
dispose: function () {
|
||
|
|
||
|
this._blurMaterial.dispose();
|
||
|
|
||
|
if ( this._cubemapShader !== null ) this._cubemapShader.dispose();
|
||
|
if ( this._equirectShader !== null ) this._equirectShader.dispose();
|
||
|
|
||
|
for ( let i = 0; i < _lodPlanes.length; i ++ ) {
|
||
|
|
||
|
_lodPlanes[ i ].dispose();
|
||
|
|
||
|
}
|
||
|
|
||
|
},
|
||
|
|
||
|
// private interface
|
||
|
|
||
|
_cleanup: function ( outputTarget ) {
|
||
|
|
||
|
this._pingPongRenderTarget.dispose();
|
||
|
this._renderer.setRenderTarget( _oldTarget );
|
||
|
outputTarget.scissorTest = false;
|
||
|
_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
|
||
|
|
||
|
},
|
||
|
|
||
|
_fromTexture: function ( texture ) {
|
||
|
|
||
|
_oldTarget = this._renderer.getRenderTarget();
|
||
|
const cubeUVRenderTarget = this._allocateTargets( texture );
|
||
|
this._textureToCubeUV( texture, cubeUVRenderTarget );
|
||
|
this._applyPMREM( cubeUVRenderTarget );
|
||
|
this._cleanup( cubeUVRenderTarget );
|
||
|
|
||
|
return cubeUVRenderTarget;
|
||
|
|
||
|
},
|
||
|
|
||
|
_allocateTargets: function ( texture ) { // warning: null texture is valid
|
||
|
|
||
|
const params = {
|
||
|
magFilter: NearestFilter,
|
||
|
minFilter: NearestFilter,
|
||
|
generateMipmaps: false,
|
||
|
type: UnsignedByteType,
|
||
|
format: RGBEFormat,
|
||
|
encoding: _isLDR( texture ) ? texture.encoding : RGBEEncoding,
|
||
|
depthBuffer: false,
|
||
|
stencilBuffer: false
|
||
|
};
|
||
|
|
||
|
const cubeUVRenderTarget = _createRenderTarget( params );
|
||
|
cubeUVRenderTarget.depthBuffer = texture ? false : true;
|
||
|
this._pingPongRenderTarget = _createRenderTarget( params );
|
||
|
return cubeUVRenderTarget;
|
||
|
|
||
|
},
|
||
|
|
||
|
_compileMaterial: function ( material ) {
|
||
|
|
||
|
const tmpMesh = new Mesh( _lodPlanes[ 0 ], material );
|
||
|
this._renderer.compile( tmpMesh, _flatCamera );
|
||
|
|
||
|
},
|
||
|
|
||
|
_sceneToCubeUV: function ( scene, near, far, cubeUVRenderTarget ) {
|
||
|
|
||
|
const fov = 90;
|
||
|
const aspect = 1;
|
||
|
const cubeCamera = new PerspectiveCamera( fov, aspect, near, far );
|
||
|
const upSign = [ 1, - 1, 1, 1, 1, 1 ];
|
||
|
const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
|
||
|
const renderer = this._renderer;
|
||
|
|
||
|
const outputEncoding = renderer.outputEncoding;
|
||
|
const toneMapping = renderer.toneMapping;
|
||
|
const clearColor = renderer.getClearColor();
|
||
|
const clearAlpha = renderer.getClearAlpha();
|
||
|
|
||
|
renderer.toneMapping = NoToneMapping;
|
||
|
renderer.outputEncoding = LinearEncoding;
|
||
|
|
||
|
let background = scene.background;
|
||
|
if ( background && background.isColor ) {
|
||
|
|
||
|
background.convertSRGBToLinear();
|
||
|
// Convert linear to RGBE
|
||
|
const maxComponent = Math.max( background.r, background.g, background.b );
|
||
|
const fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 );
|
||
|
background = background.multiplyScalar( Math.pow( 2.0, - fExp ) );
|
||
|
const alpha = ( fExp + 128.0 ) / 255.0;
|
||
|
renderer.setClearColor( background, alpha );
|
||
|
scene.background = null;
|
||
|
|
||
|
}
|
||
|
|
||
|
for ( let i = 0; i < 6; i ++ ) {
|
||
|
|
||
|
const col = i % 3;
|
||
|
if ( col == 0 ) {
|
||
|
|
||
|
cubeCamera.up.set( 0, upSign[ i ], 0 );
|
||
|
cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
|
||
|
|
||
|
} else if ( col == 1 ) {
|
||
|
|
||
|
cubeCamera.up.set( 0, 0, upSign[ i ] );
|
||
|
cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
|
||
|
|
||
|
} else {
|
||
|
|
||
|
cubeCamera.up.set( 0, upSign[ i ], 0 );
|
||
|
cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
|
||
|
|
||
|
}
|
||
|
|
||
|
_setViewport( cubeUVRenderTarget,
|
||
|
col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX );
|
||
|
renderer.setRenderTarget( cubeUVRenderTarget );
|
||
|
renderer.render( scene, cubeCamera );
|
||
|
|
||
|
}
|
||
|
|
||
|
renderer.toneMapping = toneMapping;
|
||
|
renderer.outputEncoding = outputEncoding;
|
||
|
renderer.setClearColor( clearColor, clearAlpha );
|
||
|
|
||
|
},
|
||
|
|
||
|
_textureToCubeUV: function ( texture, cubeUVRenderTarget ) {
|
||
|
|
||
|
const renderer = this._renderer;
|
||
|
|
||
|
if ( texture.isCubeTexture ) {
|
||
|
|
||
|
if ( this._cubemapShader == null ) {
|
||
|
|
||
|
this._cubemapShader = _getCubemapShader();
|
||
|
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
|
||
|
if ( this._equirectShader == null ) {
|
||
|
|
||
|
this._equirectShader = _getEquirectShader();
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
|
||
|
const mesh = new Mesh( _lodPlanes[ 0 ], material );
|
||
|
|
||
|
const uniforms = material.uniforms;
|
||
|
|
||
|
uniforms[ 'envMap' ].value = texture;
|
||
|
|
||
|
if ( ! texture.isCubeTexture ) {
|
||
|
|
||
|
uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height );
|
||
|
|
||
|
}
|
||
|
|
||
|
uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ];
|
||
|
uniforms[ 'outputEncoding' ].value = ENCODINGS[ cubeUVRenderTarget.texture.encoding ];
|
||
|
|
||
|
_setViewport( cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX );
|
||
|
|
||
|
renderer.setRenderTarget( cubeUVRenderTarget );
|
||
|
renderer.render( mesh, _flatCamera );
|
||
|
|
||
|
},
|
||
|
|
||
|
_applyPMREM: function ( cubeUVRenderTarget ) {
|
||
|
|
||
|
const renderer = this._renderer;
|
||
|
const autoClear = renderer.autoClear;
|
||
|
renderer.autoClear = false;
|
||
|
|
||
|
for ( let i = 1; i < TOTAL_LODS; i ++ ) {
|
||
|
|
||
|
const sigma = Math.sqrt( _sigmas[ i ] * _sigmas[ i ] - _sigmas[ i - 1 ] * _sigmas[ i - 1 ] );
|
||
|
|
||
|
const poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ];
|
||
|
|
||
|
this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
|
||
|
|
||
|
}
|
||
|
|
||
|
renderer.autoClear = autoClear;
|
||
|
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
|
||
|
* vertically and horizontally, but this breaks down on a cube. Here we apply
|
||
|
* the blur latitudinally (around the poles), and then longitudinally (towards
|
||
|
* the poles) to approximate the orthogonally-separable blur. It is least
|
||
|
* accurate at the poles, but still does a decent job.
|
||
|
*/
|
||
|
_blur: function ( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
|
||
|
|
||
|
const pingPongRenderTarget = this._pingPongRenderTarget;
|
||
|
|
||
|
this._halfBlur(
|
||
|
cubeUVRenderTarget,
|
||
|
pingPongRenderTarget,
|
||
|
lodIn,
|
||
|
lodOut,
|
||
|
sigma,
|
||
|
'latitudinal',
|
||
|
poleAxis );
|
||
|
|
||
|
this._halfBlur(
|
||
|
pingPongRenderTarget,
|
||
|
cubeUVRenderTarget,
|
||
|
lodOut,
|
||
|
lodOut,
|
||
|
sigma,
|
||
|
'longitudinal',
|
||
|
poleAxis );
|
||
|
|
||
|
},
|
||
|
|
||
|
_halfBlur: function ( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
|
||
|
|
||
|
const renderer = this._renderer;
|
||
|
const blurMaterial = this._blurMaterial;
|
||
|
|
||
|
if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
|
||
|
|
||
|
console.error(
|
||
|
'blur direction must be either latitudinal or longitudinal!' );
|
||
|
|
||
|
}
|
||
|
|
||
|
// Number of standard deviations at which to cut off the discrete approximation.
|
||
|
const STANDARD_DEVIATIONS = 3;
|
||
|
|
||
|
const blurMesh = new Mesh( _lodPlanes[ lodOut ], blurMaterial );
|
||
|
const blurUniforms = blurMaterial.uniforms;
|
||
|
|
||
|
const pixels = _sizeLods[ lodIn ] - 1;
|
||
|
const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
|
||
|
const sigmaPixels = sigmaRadians / radiansPerPixel;
|
||
|
const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
|
||
|
|
||
|
if ( samples > MAX_SAMPLES ) {
|
||
|
|
||
|
console.warn( `sigmaRadians, ${
|
||
|
sigmaRadians}, is too large and will clip, as it requested ${
|
||
|
samples} samples when the maximum is set to ${MAX_SAMPLES}` );
|
||
|
|
||
|
}
|
||
|
|
||
|
const weights = [];
|
||
|
let sum = 0;
|
||
|
|
||
|
for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
|
||
|
|
||
|
const x = i / sigmaPixels;
|
||
|
const weight = Math.exp( - x * x / 2 );
|
||
|
weights.push( weight );
|
||
|
|
||
|
if ( i == 0 ) {
|
||
|
|
||
|
sum += weight;
|
||
|
|
||
|
} else if ( i < samples ) {
|
||
|
|
||
|
sum += 2 * weight;
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
for ( let i = 0; i < weights.length; i ++ ) {
|
||
|
|
||
|
weights[ i ] = weights[ i ] / sum;
|
||
|
|
||
|
}
|
||
|
|
||
|
blurUniforms[ 'envMap' ].value = targetIn.texture;
|
||
|
blurUniforms[ 'samples' ].value = samples;
|
||
|
blurUniforms[ 'weights' ].value = weights;
|
||
|
blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';
|
||
|
|
||
|
if ( poleAxis ) {
|
||
|
|
||
|
blurUniforms[ 'poleAxis' ].value = poleAxis;
|
||
|
|
||
|
}
|
||
|
|
||
|
blurUniforms[ 'dTheta' ].value = radiansPerPixel;
|
||
|
blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn;
|
||
|
blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
|
||
|
blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
|
||
|
|
||
|
const outputSize = _sizeLods[ lodOut ];
|
||
|
const x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize );
|
||
|
const y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) + 2 * outputSize * ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 );
|
||
|
|
||
|
_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
|
||
|
renderer.setRenderTarget( targetOut );
|
||
|
renderer.render( blurMesh, _flatCamera );
|
||
|
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
function _isLDR( texture ) {
|
||
|
|
||
|
if ( texture === undefined || texture.type !== UnsignedByteType ) return false;
|
||
|
|
||
|
return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
|
||
|
|
||
|
}
|
||
|
|
||
|
function _createPlanes() {
|
||
|
|
||
|
const _lodPlanes = [];
|
||
|
const _sizeLods = [];
|
||
|
const _sigmas = [];
|
||
|
|
||
|
let lod = LOD_MAX;
|
||
|
|
||
|
for ( let i = 0; i < TOTAL_LODS; i ++ ) {
|
||
|
|
||
|
const sizeLod = Math.pow( 2, lod );
|
||
|
_sizeLods.push( sizeLod );
|
||
|
let sigma = 1.0 / sizeLod;
|
||
|
|
||
|
if ( i > LOD_MAX - LOD_MIN ) {
|
||
|
|
||
|
sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ];
|
||
|
|
||
|
} else if ( i == 0 ) {
|
||
|
|
||
|
sigma = 0;
|
||
|
|
||
|
}
|
||
|
|
||
|
_sigmas.push( sigma );
|
||
|
|
||
|
const texelSize = 1.0 / ( sizeLod - 1 );
|
||
|
const min = - texelSize / 2;
|
||
|
const max = 1 + texelSize / 2;
|
||
|
const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
|
||
|
|
||
|
const cubeFaces = 6;
|
||
|
const vertices = 6;
|
||
|
const positionSize = 3;
|
||
|
const uvSize = 2;
|
||
|
const faceIndexSize = 1;
|
||
|
|
||
|
const position = new Float32Array( positionSize * vertices * cubeFaces );
|
||
|
const uv = new Float32Array( uvSize * vertices * cubeFaces );
|
||
|
const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
|
||
|
|
||
|
for ( let face = 0; face < cubeFaces; face ++ ) {
|
||
|
|
||
|
const x = ( face % 3 ) * 2 / 3 - 1;
|
||
|
const y = face > 2 ? 0 : - 1;
|
||
|
const coordinates = [
|
||
|
x, y, 0,
|
||
|
x + 2 / 3, y, 0,
|
||
|
x + 2 / 3, y + 1, 0,
|
||
|
x, y, 0,
|
||
|
x + 2 / 3, y + 1, 0,
|
||
|
x, y + 1, 0
|
||
|
];
|
||
|
position.set( coordinates, positionSize * vertices * face );
|
||
|
uv.set( uv1, uvSize * vertices * face );
|
||
|
const fill = [ face, face, face, face, face, face ];
|
||
|
faceIndex.set( fill, faceIndexSize * vertices * face );
|
||
|
|
||
|
}
|
||
|
|
||
|
const planes = new BufferGeometry();
|
||
|
planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
|
||
|
planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
|
||
|
planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
|
||
|
_lodPlanes.push( planes );
|
||
|
|
||
|
if ( lod > LOD_MIN ) {
|
||
|
|
||
|
lod --;
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return { _lodPlanes, _sizeLods, _sigmas };
|
||
|
|
||
|
}
|
||
|
|
||
|
function _createRenderTarget( params ) {
|
||
|
|
||
|
const cubeUVRenderTarget = new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params );
|
||
|
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
|
||
|
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
|
||
|
cubeUVRenderTarget.scissorTest = true;
|
||
|
return cubeUVRenderTarget;
|
||
|
|
||
|
}
|
||
|
|
||
|
function _setViewport( target, x, y, width, height ) {
|
||
|
|
||
|
target.viewport.set( x, y, width, height );
|
||
|
target.scissor.set( x, y, width, height );
|
||
|
|
||
|
}
|
||
|
|
||
|
function _getBlurShader( maxSamples ) {
|
||
|
|
||
|
const weights = new Float32Array( maxSamples );
|
||
|
const poleAxis = new Vector3( 0, 1, 0 );
|
||
|
const shaderMaterial = new RawShaderMaterial( {
|
||
|
|
||
|
name: 'SphericalGaussianBlur',
|
||
|
|
||
|
defines: { 'n': maxSamples },
|
||
|
|
||
|
uniforms: {
|
||
|
'envMap': { value: null },
|
||
|
'samples': { value: 1 },
|
||
|
'weights': { value: weights },
|
||
|
'latitudinal': { value: false },
|
||
|
'dTheta': { value: 0 },
|
||
|
'mipInt': { value: 0 },
|
||
|
'poleAxis': { value: poleAxis },
|
||
|
'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
|
||
|
'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
|
||
|
},
|
||
|
|
||
|
vertexShader: _getCommonVertexShader(),
|
||
|
|
||
|
fragmentShader: /* glsl */`
|
||
|
|
||
|
precision mediump float;
|
||
|
precision mediump int;
|
||
|
|
||
|
varying vec3 vOutputDirection;
|
||
|
|
||
|
uniform sampler2D envMap;
|
||
|
uniform int samples;
|
||
|
uniform float weights[ n ];
|
||
|
uniform bool latitudinal;
|
||
|
uniform float dTheta;
|
||
|
uniform float mipInt;
|
||
|
uniform vec3 poleAxis;
|
||
|
|
||
|
${ _getEncodings() }
|
||
|
|
||
|
#define ENVMAP_TYPE_CUBE_UV
|
||
|
#include <cube_uv_reflection_fragment>
|
||
|
|
||
|
vec3 getSample( float theta, vec3 axis ) {
|
||
|
|
||
|
float cosTheta = cos( theta );
|
||
|
// Rodrigues' axis-angle rotation
|
||
|
vec3 sampleDirection = vOutputDirection * cosTheta
|
||
|
+ cross( axis, vOutputDirection ) * sin( theta )
|
||
|
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
|
||
|
|
||
|
return bilinearCubeUV( envMap, sampleDirection, mipInt );
|
||
|
|
||
|
}
|
||
|
|
||
|
void main() {
|
||
|
|
||
|
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
|
||
|
|
||
|
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
|
||
|
|
||
|
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
|
||
|
|
||
|
}
|
||
|
|
||
|
axis = normalize( axis );
|
||
|
|
||
|
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
|
||
|
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
|
||
|
|
||
|
for ( int i = 1; i < n; i++ ) {
|
||
|
|
||
|
if ( i >= samples ) {
|
||
|
|
||
|
break;
|
||
|
|
||
|
}
|
||
|
|
||
|
float theta = dTheta * float( i );
|
||
|
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
|
||
|
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
|
||
|
|
||
|
}
|
||
|
|
||
|
gl_FragColor = linearToOutputTexel( gl_FragColor );
|
||
|
|
||
|
}
|
||
|
`,
|
||
|
|
||
|
blending: NoBlending,
|
||
|
depthTest: false,
|
||
|
depthWrite: false
|
||
|
|
||
|
} );
|
||
|
|
||
|
return shaderMaterial;
|
||
|
|
||
|
}
|
||
|
|
||
|
function _getEquirectShader() {
|
||
|
|
||
|
const texelSize = new Vector2( 1, 1 );
|
||
|
const shaderMaterial = new RawShaderMaterial( {
|
||
|
|
||
|
name: 'EquirectangularToCubeUV',
|
||
|
|
||
|
uniforms: {
|
||
|
'envMap': { value: null },
|
||
|
'texelSize': { value: texelSize },
|
||
|
'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
|
||
|
'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
|
||
|
},
|
||
|
|
||
|
vertexShader: _getCommonVertexShader(),
|
||
|
|
||
|
fragmentShader: /* glsl */`
|
||
|
|
||
|
precision mediump float;
|
||
|
precision mediump int;
|
||
|
|
||
|
varying vec3 vOutputDirection;
|
||
|
|
||
|
uniform sampler2D envMap;
|
||
|
uniform vec2 texelSize;
|
||
|
|
||
|
${ _getEncodings() }
|
||
|
|
||
|
#include <common>
|
||
|
|
||
|
void main() {
|
||
|
|
||
|
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
|
||
|
|
||
|
vec3 outputDirection = normalize( vOutputDirection );
|
||
|
vec2 uv = equirectUv( outputDirection );
|
||
|
|
||
|
vec2 f = fract( uv / texelSize - 0.5 );
|
||
|
uv -= f * texelSize;
|
||
|
vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
||
|
uv.x += texelSize.x;
|
||
|
vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
||
|
uv.y += texelSize.y;
|
||
|
vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
||
|
uv.x -= texelSize.x;
|
||
|
vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
||
|
|
||
|
vec3 tm = mix( tl, tr, f.x );
|
||
|
vec3 bm = mix( bl, br, f.x );
|
||
|
gl_FragColor.rgb = mix( tm, bm, f.y );
|
||
|
|
||
|
gl_FragColor = linearToOutputTexel( gl_FragColor );
|
||
|
|
||
|
}
|
||
|
`,
|
||
|
|
||
|
blending: NoBlending,
|
||
|
depthTest: false,
|
||
|
depthWrite: false
|
||
|
|
||
|
} );
|
||
|
|
||
|
return shaderMaterial;
|
||
|
|
||
|
}
|
||
|
|
||
|
function _getCubemapShader() {
|
||
|
|
||
|
const shaderMaterial = new RawShaderMaterial( {
|
||
|
|
||
|
name: 'CubemapToCubeUV',
|
||
|
|
||
|
uniforms: {
|
||
|
'envMap': { value: null },
|
||
|
'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
|
||
|
'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
|
||
|
},
|
||
|
|
||
|
vertexShader: _getCommonVertexShader(),
|
||
|
|
||
|
fragmentShader: /* glsl */`
|
||
|
|
||
|
precision mediump float;
|
||
|
precision mediump int;
|
||
|
|
||
|
varying vec3 vOutputDirection;
|
||
|
|
||
|
uniform samplerCube envMap;
|
||
|
|
||
|
${ _getEncodings() }
|
||
|
|
||
|
void main() {
|
||
|
|
||
|
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
|
||
|
gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;
|
||
|
gl_FragColor = linearToOutputTexel( gl_FragColor );
|
||
|
|
||
|
}
|
||
|
`,
|
||
|
|
||
|
blending: NoBlending,
|
||
|
depthTest: false,
|
||
|
depthWrite: false
|
||
|
|
||
|
} );
|
||
|
|
||
|
return shaderMaterial;
|
||
|
|
||
|
}
|
||
|
|
||
|
function _getCommonVertexShader() {
|
||
|
|
||
|
return /* glsl */`
|
||
|
|
||
|
precision mediump float;
|
||
|
precision mediump int;
|
||
|
|
||
|
attribute vec3 position;
|
||
|
attribute vec2 uv;
|
||
|
attribute float faceIndex;
|
||
|
|
||
|
varying vec3 vOutputDirection;
|
||
|
|
||
|
// RH coordinate system; PMREM face-indexing convention
|
||
|
vec3 getDirection( vec2 uv, float face ) {
|
||
|
|
||
|
uv = 2.0 * uv - 1.0;
|
||
|
|
||
|
vec3 direction = vec3( uv, 1.0 );
|
||
|
|
||
|
if ( face == 0.0 ) {
|
||
|
|
||
|
direction = direction.zyx; // ( 1, v, u ) pos x
|
||
|
|
||
|
} else if ( face == 1.0 ) {
|
||
|
|
||
|
direction = direction.xzy;
|
||
|
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
|
||
|
|
||
|
} else if ( face == 2.0 ) {
|
||
|
|
||
|
direction.x *= -1.0; // ( -u, v, 1 ) pos z
|
||
|
|
||
|
} else if ( face == 3.0 ) {
|
||
|
|
||
|
direction = direction.zyx;
|
||
|
direction.xz *= -1.0; // ( -1, v, -u ) neg x
|
||
|
|
||
|
} else if ( face == 4.0 ) {
|
||
|
|
||
|
direction = direction.xzy;
|
||
|
direction.xy *= -1.0; // ( -u, -1, v ) neg y
|
||
|
|
||
|
} else if ( face == 5.0 ) {
|
||
|
|
||
|
direction.z *= -1.0; // ( u, v, -1 ) neg z
|
||
|
|
||
|
}
|
||
|
|
||
|
return direction;
|
||
|
|
||
|
}
|
||
|
|
||
|
void main() {
|
||
|
|
||
|
vOutputDirection = getDirection( uv, faceIndex );
|
||
|
gl_Position = vec4( position, 1.0 );
|
||
|
|
||
|
}
|
||
|
`;
|
||
|
|
||
|
}
|
||
|
|
||
|
function _getEncodings() {
|
||
|
|
||
|
return /* glsl */`
|
||
|
|
||
|
uniform int inputEncoding;
|
||
|
uniform int outputEncoding;
|
||
|
|
||
|
#include <encodings_pars_fragment>
|
||
|
|
||
|
vec4 inputTexelToLinear( vec4 value ) {
|
||
|
|
||
|
if ( inputEncoding == 0 ) {
|
||
|
|
||
|
return value;
|
||
|
|
||
|
} else if ( inputEncoding == 1 ) {
|
||
|
|
||
|
return sRGBToLinear( value );
|
||
|
|
||
|
} else if ( inputEncoding == 2 ) {
|
||
|
|
||
|
return RGBEToLinear( value );
|
||
|
|
||
|
} else if ( inputEncoding == 3 ) {
|
||
|
|
||
|
return RGBMToLinear( value, 7.0 );
|
||
|
|
||
|
} else if ( inputEncoding == 4 ) {
|
||
|
|
||
|
return RGBMToLinear( value, 16.0 );
|
||
|
|
||
|
} else if ( inputEncoding == 5 ) {
|
||
|
|
||
|
return RGBDToLinear( value, 256.0 );
|
||
|
|
||
|
} else {
|
||
|
|
||
|
return GammaToLinear( value, 2.2 );
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
vec4 linearToOutputTexel( vec4 value ) {
|
||
|
|
||
|
if ( outputEncoding == 0 ) {
|
||
|
|
||
|
return value;
|
||
|
|
||
|
} else if ( outputEncoding == 1 ) {
|
||
|
|
||
|
return LinearTosRGB( value );
|
||
|
|
||
|
} else if ( outputEncoding == 2 ) {
|
||
|
|
||
|
return LinearToRGBE( value );
|
||
|
|
||
|
} else if ( outputEncoding == 3 ) {
|
||
|
|
||
|
return LinearToRGBM( value, 7.0 );
|
||
|
|
||
|
} else if ( outputEncoding == 4 ) {
|
||
|
|
||
|
return LinearToRGBM( value, 16.0 );
|
||
|
|
||
|
} else if ( outputEncoding == 5 ) {
|
||
|
|
||
|
return LinearToRGBD( value, 256.0 );
|
||
|
|
||
|
} else {
|
||
|
|
||
|
return LinearToGamma( value, 2.2 );
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
vec4 envMapTexelToLinear( vec4 color ) {
|
||
|
|
||
|
return inputTexelToLinear( color );
|
||
|
|
||
|
}
|
||
|
`;
|
||
|
|
||
|
}
|
||
|
|
||
|
export { PMREMGenerator };
|